Quantum Annealing Designs Nonhemolytic Antimicrobial Peptides in a Discrete Latent Space.

Andrejs Tučs, Francois Berenger, Akiko Yumoto, Ryo Tamura, Takanori Uzawa, Koji Tsuda
Author Information
  1. Andrejs Tučs: Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan.
  2. Francois Berenger: Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan. ORCID
  3. Akiko Yumoto: Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
  4. Ryo Tamura: Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan. ORCID
  5. Takanori Uzawa: Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. ORCID
  6. Koji Tsuda: Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan. ORCID

Abstract

Increasing the variety of antimicrobial peptides is crucial in meeting the global challenge of multi-drug-resistant bacterial pathogens. While several deep-learning-based peptide design pipelines are reported, they may not be optimal in data efficiency. High efficiency requires a well-compressed latent space, where optimization is likely to fail due to numerous local minima. We present a multi-objective peptide design pipeline based on a discrete latent space and D-Wave quantum annealer with the aim of solving the local minima problem. To achieve multi-objective optimization, multiple peptide properties are encoded into a score using non-dominated sorting. Our pipeline is applied to design therapeutic peptides that are antimicrobial and non-hemolytic at the same time. From 200 000 peptides designed by our pipeline, four peptides proceeded to wet-lab validation. Three of them showed high anti-microbial activity, and two are non-hemolytic. Our results demonstrate how quantum-based optimizers can be taken advantage of in real-world medical studies.

References

  1. Nature. 2011 May 12;473(7346):194-8 [PMID: 21562559]
  2. Nat Biomed Eng. 2021 Jun;5(6):613-623 [PMID: 33707779]
  3. Sci Rep. 2016 Apr 19;6:24684 [PMID: 27089856]
  4. Science. 2016 Nov 4;354(6312):603-606 [PMID: 27811271]
  5. Nat Rev Drug Discov. 2011 Dec 16;11(1):37-51 [PMID: 22173434]
  6. ACS Omega. 2020 Aug 28;5(36):22847-22851 [PMID: 32954133]
  7. Chem Sci. 2021 Jun 7;12(26):9221-9232 [PMID: 34349895]
  8. Acc Chem Res. 2021 Mar 16;54(6):1334-1346 [PMID: 33635621]
  9. Nucleic Acids Res. 2014 Jan;42(Database issue):D1154-8 [PMID: 24265220]
  10. Int J Antimicrob Agents. 2012 Apr;39(4):346-51 [PMID: 22325123]
  11. Phys Rev E. 2022 Mar;105(3-2):035305 [PMID: 35428085]
  12. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D590-2 [PMID: 14681488]
  13. Bioinformatics. 2017 Sep 01;33(17):2753-2755 [PMID: 28472272]
  14. Nucleic Acids Res. 2016 Jan 4;44(D1):D1104-12 [PMID: 26578581]
  15. Biophys J. 1982 Jan;37(1):329-38 [PMID: 7055625]
  16. PLoS One. 2013 Jun 18;8(6):e66557 [PMID: 23825543]

Word Cloud

Created with Highcharts 10.0.0peptidespeptidedesignpipelineantimicrobialefficiencylatentspaceoptimizationlocalminimamulti-objectivenon-hemolyticIncreasingvarietycrucialmeetingglobalchallengemulti-drug-resistantbacterialpathogensseveraldeep-learning-basedpipelinesreportedmayoptimaldataHighrequireswell-compressedlikelyfailduenumerouspresentbaseddiscreteD-Wavequantumannealeraimsolvingproblemachievemultiplepropertiesencodedscoreusingnon-dominatedsortingappliedtherapeutictime200 000designedfourproceededwet-labvalidationThreeshowedhighanti-microbialactivitytworesultsdemonstratequantum-basedoptimizerscantakenadvantagereal-worldmedicalstudiesQuantumAnnealingDesignsNonhemolyticAntimicrobialPeptidesDiscreteLatentSpace

Similar Articles

Cited By