Increasing Pump-Probe Signal toward Asymptotic Limits.

Kevin C Robben, Christopher M Cheatum
Author Information
  1. Kevin C Robben: Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA. ORCID
  2. Christopher M Cheatum: Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA. ORCID

Abstract

Optimization of pump-probe signal requires a complete understanding of how signal scales with experimental factors. In simple systems, signal scales quadratically with molar absorptivity, and linearly with fluence, concentration, and path length. In practice, scaling factors weaken beyond certain thresholds (e.g., OD > 0.1) due to asymptotic limits related to optical density, fluence and path length. While computational models can accurately account for subdued scaling, quantitative explanations often appear quite technical in the literature. This Perspective aims to present a simpler understanding of the subject with concise formulas for estimating absolute magnitudes of signal under both ordinary and asymptotic scaling conditions. This formulation may be more appealing for spectroscopists seeking rough estimates of signal or relative comparisons. We identify scaling dependencies of signal with respect to experimental parameters and discuss applications for improving signal under broad conditions. We also review other signal enhancement methods, such as local-oscillator attenuation and plasmonic enhancement, and discuss respective benefits and challenges regarding asymptotic limits that signal cannot exceed.

References

  1. J Phys Chem B. 2020 Oct 1;124(39):8665-8677 [PMID: 32902979]
  2. Nature. 2007 May 24;447(7143):441-6 [PMID: 17522678]
  3. Chem Phys Lett. 2009 Sep 1;478(4):249-253 [PMID: 20161057]
  4. Biochemistry. 2018 Jul 3;57(26):3702-3712 [PMID: 29787228]
  5. J Phys Chem B. 2011 Sep 29;115(38):11294-304 [PMID: 21823631]
  6. Science. 2014 Jan 31;343(6170):512-6 [PMID: 24336568]
  7. Opt Express. 2012 Dec 3;20(25):27725-39 [PMID: 23262719]
  8. Opt Express. 2016 May 30;24(11):12202-27 [PMID: 27410138]
  9. J Am Chem Soc. 2008 May 28;130(21):6698-9 [PMID: 18459774]
  10. Nat Chem. 2014 Aug;6(8):706-11 [PMID: 25054941]
  11. Anal Chem. 2022 Dec 27;94(51):17988-17999 [PMID: 36516397]
  12. Nature. 2010 Sep 23;467(7314):440-3 [PMID: 20864998]
  13. J Chem Phys. 2021 Mar 14;154(10):104201 [PMID: 33722043]
  14. Phys Chem Chem Phys. 2016 Jun 28;18(24):16088-93 [PMID: 27265518]
  15. Opt Express. 2020 Oct 26;28(22):33584-33602 [PMID: 33115018]
  16. J Phys Chem Lett. 2019 Apr 18;10(8):1967-1972 [PMID: 30942587]
  17. Chem Rev. 2017 Aug 23;117(16):10726-10759 [PMID: 28060489]
  18. J Phys Chem Lett. 2016 Apr 7;7(7):1281-7 [PMID: 26990401]
  19. J Am Chem Soc. 2006 Oct 18;128(41):13356-7 [PMID: 17031938]
  20. Biol Proced Online. 2009 May 15;11:32-51 [PMID: 19495910]
  21. Nano Lett. 2017 Sep 13;17(9):5768-5774 [PMID: 28787169]
  22. Annu Rev Phys Chem. 2015 Apr;66:357-77 [PMID: 25580624]
  23. J Phys Chem B. 2009 Dec 24;113(51):16291-5 [PMID: 20014871]
  24. Annu Rev Phys Chem. 2000;51:691-729 [PMID: 11031297]
  25. Science. 2017 Aug 4;357(6350):491-495 [PMID: 28705988]
  26. Phys Chem Chem Phys. 2018 Aug 1;20(30):19906-19915 [PMID: 30019716]
  27. Opt Lett. 2004 Aug 1;29(15):1811-3 [PMID: 15352378]
  28. Opt Lett. 2014 Feb 1;39(3):513-6 [PMID: 24487853]
  29. J Phys Chem Lett. 2016 Jul 7;7(13):2507-11 [PMID: 27305279]
  30. Nat Chem. 2018 Jul;10(7):780-786 [PMID: 29785033]
  31. Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6115-20 [PMID: 21444789]
  32. Opt Express. 2011 Aug 1;19(16):15047-61 [PMID: 21934866]
  33. J Phys Chem B. 2012 Nov 26;116(46):13705-12 [PMID: 23116486]
  34. Opt Express. 2019 Jul 22;27(15):20323-20346 [PMID: 31510129]
  35. Acc Chem Res. 2009 Sep 15;42(9):1405-11 [PMID: 19391619]
  36. J Phys Chem B. 2013 Aug 1;117(30):8987-93 [PMID: 23865850]
  37. J Phys Chem A. 2015 Apr 30;119(17):3936-60 [PMID: 25880720]
  38. Annu Rev Anal Chem (Palo Alto Calif). 2021 Jun 5;14(1):299-321 [PMID: 34314221]
  39. Science. 2015 Aug 7;349(6248):632-5 [PMID: 26250682]
  40. Opt Express. 2017 Oct 16;25(21):26262-26279 [PMID: 29041285]
  41. J Am Chem Soc. 2003 Jan 15;125(2):405-11 [PMID: 12517152]
  42. J Phys Chem Lett. 2020 Aug 6;11(15):6185-6190 [PMID: 32659094]
  43. Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14237-42 [PMID: 17551015]
  44. Phys Chem Chem Phys. 2020 Mar 11;22(10):5463-5475 [PMID: 32096510]
  45. Phys Rev Lett. 2015 Jun 12;114(23):233004 [PMID: 26196799]
  46. J Am Chem Soc. 2020 Jan 8;142(1):3-15 [PMID: 31800225]
  47. Chem Rev. 2017 Apr 12;117(7):5110-5145 [PMID: 28358482]
  48. J Phys Chem Lett. 2019 Jul 18;10(14):3836-3842 [PMID: 31246039]
  49. Opt Express. 2016 Feb 22;24(4):4117-27 [PMID: 26907062]
  50. Science. 2009 May 29;324(5931):1169-73 [PMID: 19478176]
  51. Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4764-9 [PMID: 24639540]
  52. J Chem Phys. 2018 Apr 7;148(13):131101 [PMID: 29626913]
  53. J Chem Phys. 2020 Mar 7;152(9):094201 [PMID: 33480715]
  54. J Phys Chem A. 2013 Jul 25;117(29):6332-45 [PMID: 23713582]
  55. J Phys Chem B. 2015 Nov 5;119(44):14065-75 [PMID: 26446575]
  56. Nature. 2007 Nov 22;450(7169):575-8 [PMID: 18033302]
  57. Opt Express. 2017 May 29;25(11):12896-12907 [PMID: 28786641]
  58. ACS Catal. 2019 Dec 6;9(12):11199-11206 [PMID: 33996196]
  59. J Chem Phys. 2012 Nov 14;137(18):184202 [PMID: 23163364]
  60. Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6614-9 [PMID: 19346479]
  61. J Phys Chem A. 2018 Jan 25;122(3):780-787 [PMID: 29250947]
  62. J Chem Phys. 2007 Jan 28;126(4):044511 [PMID: 17286491]
  63. Phys Chem Chem Phys. 2017 Apr 12;19(15):10081-10086 [PMID: 28367555]
  64. J Chem Phys. 2019 Jan 14;150(2):024707 [PMID: 30646693]
  65. Nat Chem. 2014 Mar;6(3):196-201 [PMID: 24557133]
  66. J Phys Chem B. 2018 Mar 8;122(9):2587-2599 [PMID: 29095618]
  67. Science. 1994 Jun 17;264(5166):1750-3 [PMID: 17839910]
  68. Appl Spectrosc. 2016 Apr;70(4):645-53 [PMID: 26887988]
  69. J Phys Chem B. 2021 Nov 25;125(46):12876-12891 [PMID: 34783568]
  70. J Chem Phys. 2020 Aug 7;153(5):050902 [PMID: 32770907]
  71. J Chem Phys. 2019 Sep 28;151(12):121103 [PMID: 31575172]
  72. J Phys Chem Lett. 2018 Aug 16;9(16):4596-4601 [PMID: 30044640]
  73. Angew Chem Int Ed Engl. 2013 Jan 7;52(2):634-8 [PMID: 23184759]
  74. Acc Chem Res. 2017 Apr 18;50(4):968-976 [PMID: 28345879]
  75. J Phys Chem B. 2019 Dec 12;123(49):10403-10409 [PMID: 31696711]
  76. Nature. 2007 Apr 12;446(7137):782-6 [PMID: 17429397]
  77. Annu Rev Phys Chem. 2015 Apr;66:667-90 [PMID: 25664841]
  78. Nat Chem. 2013 Nov;5(11):935-40 [PMID: 24153371]
  79. Nature. 2005 Aug 25;436(7054):1141-4 [PMID: 16121177]
  80. Opt Express. 2017 Apr 3;25(7):7869-7883 [PMID: 28380905]
  81. Nature. 2009 Mar 12;458(7235):178-81 [PMID: 19279631]
  82. Science. 1998 Apr 3;280(5360):69-77 [PMID: 9525859]
  83. J Phys Chem Lett. 2017 Jul 20;8(14):3341-3346 [PMID: 28677974]
  84. Opt Lett. 2008 Jun 15;33(12):1371-3 [PMID: 18552963]
  85. Anal Chem. 2013 Jun 4;85(11):5514-21 [PMID: 23663173]
  86. Anal Chem. 2017 May 16;89(10):5254-5260 [PMID: 28406611]

Word Cloud

Created with Highcharts 10.0.0signalscalingasymptoticunderstandingscalesexperimentalfactorsfluencepathlengthlimitsconditionsdiscussenhancementOptimizationpump-proberequirescompletesimplesystemsquadraticallymolarabsorptivitylinearlyconcentrationpracticeweakenbeyondcertainthresholdsegOD>01duerelatedopticaldensitycomputationalmodelscanaccuratelyaccountsubduedquantitativeexplanationsoftenappearquitetechnicalliteraturePerspectiveaimspresentsimplersubjectconciseformulasestimatingabsolutemagnitudesordinaryformulationmayappealingspectroscopistsseekingroughestimatesrelativecomparisonsidentifydependenciesrespectparametersapplicationsimprovingbroadalsoreviewmethodslocal-oscillatorattenuationplasmonicrespectivebenefitschallengesregardingexceedIncreasingPump-ProbeSignaltowardAsymptoticLimits

Similar Articles

Cited By