Left and Right Arcuate Fasciculi Are Uniquely Related to Word Reading Skills in Chinese-English Bilingual Children.

Yue Gao, Xiangzhi Meng, Zilin Bai, Xin Liu, Manli Zhang, Hehui Li, Guosheng Ding, Li Liu, James R Booth
Author Information
  1. Yue Gao: State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
  2. Xiangzhi Meng: School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavioral and Mental Health, Peking University, Beijing, China.
  3. Zilin Bai: State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China. ORCID
  4. Xin Liu: Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
  5. Manli Zhang: Department of Cognitive Neuroscience and Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands. ORCID
  6. Hehui Li: State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China. ORCID
  7. Guosheng Ding: State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
  8. Li Liu: State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
  9. James R Booth: Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA.

Abstract

Whether reading in different writing systems recruits language-unique or language-universal neural processes is a long-standing debate. Many studies have shown the left arcuate fasciculus (AF) to be involved in phonological and reading processes. In contrast, little is known about the role of the right AF in reading, but some have suggested that it may play a role in visual spatial aspects of reading or the prosodic components of language. The right AF may be more important for reading in Chinese due to its logographic and tonal properties, but this hypothesis has yet to be tested. We recruited a group of Chinese-English bilingual children (8.2 to 12.0 years old) to explore the common and unique relation of reading skill in English and Chinese to fractional anisotropy (FA) in the bilateral AF. We found that both English and Chinese reading skills were positively correlated with FA in the rostral part of the left AF-direct segment. Additionally, English reading skill was positively correlated with FA in the caudal part of the left AF-direct segment, which was also positively correlated with phonological awareness. In contrast, Chinese reading skill was positively correlated with FA in certain segments of the right AF, which was positively correlated with visual spatial ability, but not tone discrimination ability. Our results suggest that there are language universal substrates of reading across languages, but that certain left AF nodes support phonological mechanisms important for reading in English, whereas certain right AF nodes support visual spatial mechanisms important for reading in Chinese.

Keywords

References

  1. J Neurosci. 2007 Oct 31;27(44):11960-5 [PMID: 17978036]
  2. Science. 2011 Sep 16;333(6049):1647-51 [PMID: 21817014]
  3. Cereb Cortex. 2005 Jun;15(6):854-69 [PMID: 15590909]
  4. Neuroimage. 2008 Apr 1;40(2):570-582 [PMID: 18255316]
  5. Neuroimage. 2008 Jun;41(2):223-32 [PMID: 18395471]
  6. Front Psychol. 2019 Nov 15;10:2544 [PMID: 31798504]
  7. J Neurosci. 2013 Aug 14;33(33):13251-8 [PMID: 23946384]
  8. J Cogn Neurosci. 2011 Nov;23(11):3304-17 [PMID: 21568636]
  9. Brain Lang. 2011 Nov;119(2):80-8 [PMID: 21546073]
  10. Magn Reson Med. 2004 Jan;51(1):103-14 [PMID: 14705050]
  11. J Exp Child Psychol. 2011 Jun;109(2):256-62 [PMID: 21237468]
  12. Psychol Sci. 2014 Oct;25(10):1870-83 [PMID: 25212581]
  13. Dev Sci. 2015 Sep;18(5):785-98 [PMID: 25444089]
  14. Wiley Interdiscip Rev Cogn Sci. 2015 May-Jun;6(3):235-47 [PMID: 26263227]
  15. Brain Struct Funct. 2020 Apr;225(3):1103-1122 [PMID: 32270284]
  16. Hum Brain Mapp. 2018 Feb;39(2):662-679 [PMID: 29124823]
  17. Brain Lang. 2016 Sep;160:42-9 [PMID: 27474853]
  18. Brain Struct Funct. 2020 May;225(4):1401-1411 [PMID: 31883025]
  19. Neuroimage. 2003 Oct;20(2):693-712 [PMID: 14568445]
  20. Cereb Cortex. 2010 May;20(5):1223-33 [PMID: 19773547]
  21. Cereb Cortex. 2017 Feb 1;27(2):1027-1036 [PMID: 26643353]
  22. Neuropsychologia. 2009 Jul;47(8-9):1972-7 [PMID: 19428430]
  23. J Cogn Neurosci. 2004 Sep;16(7):1227-33 [PMID: 15453975]
  24. Trends Cogn Sci. 2014 Jun;18(6):274-5 [PMID: 24568928]
  25. Front Hum Neurosci. 2014 May 20;8:347 [PMID: 24904383]
  26. Neuroimage Clin. 2020;28:102446 [PMID: 33035964]
  27. Neuropsychologia. 2007 Jun 18;45(11):2439-46 [PMID: 17509627]
  28. Front Psychol. 2014 Jul 24;5:776 [PMID: 25104943]
  29. Curr Biol. 2009 Oct 13;19(19):R890-2 [PMID: 19825347]
  30. Curr Opin Neurobiol. 2007 Apr;17(2):258-70 [PMID: 17379499]
  31. Brain Struct Funct. 2017 May;222(4):1685-1703 [PMID: 27631434]
  32. Front Psychol. 2013 Jan 10;3:606 [PMID: 23335907]
  33. J Neurosci Res. 2018 Apr;96(4):626-641 [PMID: 28984377]
  34. Brain Res Bull. 2002 Oct 30;59(2):83-95 [PMID: 12379438]
  35. Neuroimage. 2005 May 1;25(4):1266-71 [PMID: 15850744]
  36. Cognition. 1995 Jan;54(1):73-98 [PMID: 7851080]
  37. Brain Lang. 2006 Sep;98(3):344-6 [PMID: 16824590]
  38. J Mem Lang. 2009 Aug 2;61(2):238-257 [PMID: 20161189]
  39. Nature. 2004 Sep 2;431(7004):71-6 [PMID: 15343334]
  40. Front Psychol. 2016 Jun 23;7:947 [PMID: 27445914]
  41. Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15510-5 [PMID: 26621710]
  42. Psychol Rev. 1989 Oct;96(4):523-68 [PMID: 2798649]
  43. Hum Brain Mapp. 2005 May;25(1):92-104 [PMID: 15846818]
  44. Dev Cogn Neurosci. 2020 Apr;42:100767 [PMID: 32072939]
  45. Dev Cogn Neurosci. 2015 Jun;13:68-74 [PMID: 26011750]
  46. Cognition. 2004 Feb;91(1):77-111 [PMID: 14711492]
  47. Front Hum Neurosci. 2020 Jun 30;14:233 [PMID: 32714169]
  48. Cereb Cortex. 2008 Nov;18(11):2471-82 [PMID: 18281301]
  49. Res Dev Disabil. 2018 Mar;74:146-159 [PMID: 29413429]
  50. Curr Opin Neurobiol. 2002 Apr;12(2):178-83 [PMID: 12015234]
  51. Neuroimage Clin. 2017 Aug 08;16:268-275 [PMID: 28840098]
  52. Front Hum Neurosci. 2019 May 21;13:154 [PMID: 31178707]
  53. Ann Dyslexia. 2011 Dec;61(2):161-76 [PMID: 21240572]
  54. Annu Rev Neurosci. 2016 Jul 8;39:103-28 [PMID: 27050319]
  55. J Exp Child Psychol. 2007 May;97(1):61-83 [PMID: 17320097]
  56. Psychol Neurosci. 2009;2(2):111-123 [PMID: 21526132]
  57. J Cogn Neurosci. 2002 Oct 1;14(7):1076-87 [PMID: 12419130]
  58. Hum Brain Mapp. 2005 May;25(1):83-91 [PMID: 15846817]
  59. Cereb Cortex. 2014 Apr;24(4):989-95 [PMID: 23236205]
  60. Cereb Cortex. 2007 Mar;17(3):591-8 [PMID: 16627859]
  61. Science. 2013 Dec 6;342(6163):1251-4 [PMID: 24311693]
  62. Hum Brain Mapp. 2015 Aug;36(8):3273-87 [PMID: 26037303]
  63. Neuropsychologia. 2012 Jul;50(9):2224-32 [PMID: 22698991]
  64. Nat Commun. 2018 Jun 8;9(1):2260 [PMID: 29884784]
  65. Neurosci Biobehav Rev. 2012 Jul;36(6):1532-52 [PMID: 22516793]
  66. Magn Reson Med. 2009 Jun;61(6):1336-49 [PMID: 19319973]
  67. Annu Rev Neurosci. 2007;30:475-503 [PMID: 17600524]
  68. PLoS One. 2012;7(9):e44848 [PMID: 23028644]
  69. J Neurosci. 2011 Jun 8;31(23):8617-24 [PMID: 21653865]
  70. Magn Reson Med. 2000 Oct;44(4):625-32 [PMID: 11025519]
  71. Neuroimage Clin. 2016 Apr 14;11:555-565 [PMID: 27158588]
  72. J Anat. 2000 Oct;197 Pt 3:335-59 [PMID: 11117622]
  73. J Exp Child Psychol. 2005 Oct;92(2):140-60 [PMID: 15904930]
  74. Cognition. 2004 May-Jun;92(1-2):67-99 [PMID: 15037127]
  75. Ann Neurol. 2005 Jan;57(1):8-16 [PMID: 15597383]
  76. PLoS One. 2012;7(11):e49790 [PMID: 23166771]
  77. Neuropsychologia. 1971 Mar;9(1):97-113 [PMID: 5146491]
  78. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):914-21 [PMID: 9448259]
  79. Neuron. 2000 Feb;25(2):493-500 [PMID: 10719902]
  80. Dev Cogn Neurosci. 2018 Jun;31:11-19 [PMID: 29727819]
  81. Pediatr Neonatol. 2019 Jun;60(3):297-304 [PMID: 30181073]
  82. Cereb Cortex. 2004 Sep;14(9):945-51 [PMID: 15115737]
  83. Neuroimage. 2014 Jan 1;84:546-53 [PMID: 24055555]
  84. Cortex. 2005 Jun;41(3):354-63 [PMID: 15871600]
  85. Hum Brain Mapp. 2002 Jan;15(1):1-25 [PMID: 11747097]
  86. Psychol Rev. 2004 Jul;111(3):662-720 [PMID: 15250780]
  87. Handb Clin Neurol. 2015;129:177-86 [PMID: 25726269]
  88. Neuroimage. 2014 Sep;98:435-41 [PMID: 24814214]
  89. Brain. 2012 Mar;135(Pt 3):935-48 [PMID: 22327793]
  90. Behav Brain Sci. 2012 Oct;35(5):310-29 [PMID: 23251930]
  91. Neuroimage. 2007 Jul 1;36(3):630-44 [PMID: 17481925]
  92. Dyslexia. 2001 Jan-Mar;7(1):37-46 [PMID: 11305230]
  93. Ann Neurol. 1999 Feb;45(2):265-9 [PMID: 9989633]
  94. Nat Neurosci. 2000 Jan;3(1):91-6 [PMID: 10607401]
  95. Cortex. 2008 Sep;44(8):983-95 [PMID: 18603235]
  96. Dev Sci. 2018 Sep;21(5):e12647 [PMID: 29411464]
  97. Curr Biol. 2013 Apr 8;23(7):R282-3 [PMID: 23578877]
  98. Neuroimage. 2011 Aug 1;57(3):760-70 [PMID: 21146615]
  99. Brain Struct Funct. 2013 Mar;218(2):595-601 [PMID: 23097036]
  100. Neuroreport. 1997 Dec 1;8(17):3809-15 [PMID: 9427375]
  101. Neuroimage Clin. 2015 Oct 23;9:648-59 [PMID: 26740918]
  102. Hum Brain Mapp. 2019 Feb 15;40(3):765-776 [PMID: 30267634]
  103. Dev Sci. 2008 Jan;11(1):171-81 [PMID: 18171377]
  104. Curr Biol. 2015 Dec 7;25(23):3079-85 [PMID: 26549262]
  105. Neuropsychologia. 2008 Nov;46(13):3170-8 [PMID: 18692514]
  106. Hum Brain Mapp. 2009 Mar;30(3):810-20 [PMID: 18381767]
  107. PLoS One. 2013 Apr 30;8(4):e61737 [PMID: 23637895]
  108. Neuropsychologia. 2009 Jan;47(1):180-94 [PMID: 18775735]
  109. Biol Psychiatry. 2005 Jun 1;57(11):1301-9 [PMID: 15950002]
  110. Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):2972-7 [PMID: 25713366]
  111. Neuroimage. 2008 Jan 1;39(1):336-47 [PMID: 17931890]

Word Cloud

Created with Highcharts 10.0.0readingAFChinesepositivelycorrelatedleftphonologicalrightvisualspatialskillEnglishFAimportantChinese-EnglishcertainabilityprocessesarcuatecontrastrolemaylanguagebilingualchildrenpartAF-directsegmentawarenessnodessupportmechanismsWhetherdifferentwritingsystemsrecruitslanguage-uniquelanguage-universalneurallong-standingdebateManystudiesshownfasciculusinvolvedlittleknownsuggestedplayaspectsprosodiccomponentsduelogographictonalpropertieshypothesisyettestedrecruitedgroup82120yearsoldexplorecommonuniquerelationfractionalanisotropybilateralfoundskillsrostralAdditionallycaudalalsosegmentstonediscriminationresultssuggestuniversalsubstratesacrosslanguageswhereasLeftRightArcuateFasciculiUniquelyRelatedWordReadingSkillsBilingualChildrenfasciculidiffusiontensorimagingDTI

Similar Articles

Cited By