What's past is prologue: FRAP keeps delivering 50 years later.

Anne K Kenworthy
Author Information
  1. Anne K Kenworthy: Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia. Electronic address: akk7hp@virginia.edu.

Abstract

Fluorescence recovery after photobleaching (FRAP) has emerged as one of the most widely utilized techniques to quantify binding and diffusion kinetics of biomolecules in biophysics. Since its inception in the mid-1970s, FRAP has been used to address an enormous array of questions including the characteristic features of lipid rafts, how cells regulate the viscosity of their cytoplasm, and the dynamics of biomolecules inside condensates formed by liquid-liquid phase separation. In this perspective, I briefly summarize the history of the field and discuss why FRAP has proven to be so incredibly versatile and popular. Next, I provide an overview of the extensive body of knowledge that has emerged on best practices for quantitative FRAP data analysis, followed by some recent examples of biological lessons learned using this powerful approach. Finally, I touch on new directions and opportunities for biophysicists to contribute to the continued development of this still-relevant research tool.

References

  1. J Bacteriol. 1999 Jan;181(1):197-203 [PMID: 9864330]
  2. Annu Rev Physiol. 1987;49:163-75 [PMID: 3551795]
  3. Protoplasma. 2014 Mar;251(2):373-82 [PMID: 24390250]
  4. Nature. 2012 Mar 07;483(7389):336-40 [PMID: 22398450]
  5. Biophys J. 1983 Jan;41(1):95-7 [PMID: 6824758]
  6. Cell. 2020 Dec 10;183(6):1572-1585.e16 [PMID: 33157040]
  7. Traffic. 2011 Nov;12(11):1648-57 [PMID: 21810156]
  8. Cell Rep. 2017 Sep 19;20(12):2749-2755 [PMID: 28930671]
  9. Nat Cell Biol. 2022 Jun;24(6):810-812 [PMID: 35681010]
  10. Nat Cell Biol. 2022 Jun;24(6):896-905 [PMID: 35681009]
  11. Nat Commun. 2022 Dec 16;13(1):7787 [PMID: 36526633]
  12. J Cell Biol. 2004 Jun 7;165(5):735-46 [PMID: 15173190]
  13. J Dairy Sci. 2013 Oct;96(10):6186-98 [PMID: 23958000]
  14. J Cell Biol. 1984 Dec;99(6):2165-74 [PMID: 6501418]
  15. Biophys J. 2011 Feb 2;100(3):791-792 [PMID: 21281595]
  16. Biophys J. 2020 Aug 4;119(3):514-524 [PMID: 32681822]
  17. Methods Mol Biol. 2021;2262:185-197 [PMID: 33977477]
  18. Cell. 2020 Dec 10;183(6):1462-1463 [PMID: 33306951]
  19. Methods Mol Biol. 2022;2438:1-30 [PMID: 35147932]
  20. EMBO J. 2023 Apr 3;42(7):e108533 [PMID: 36825437]
  21. Polymers (Basel). 2022 May 07;14(9): [PMID: 35567083]
  22. Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7189-94 [PMID: 26015579]
  23. PLoS Genet. 2017 Sep 8;13(9):e1007004 [PMID: 28886012]
  24. Biophys J. 2004 Jun;86(6):3473-95 [PMID: 15189848]
  25. Sci Rep. 2020 Nov 17;10(1):19954 [PMID: 33203884]
  26. Opt Express. 2010 Oct 25;18(22):22886-905 [PMID: 21164628]
  27. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032715 [PMID: 26465506]
  28. J Bacteriol. 2010 Sep;192(18):4535-40 [PMID: 20581203]
  29. Cold Spring Harb Protoc. 2015 Jan 05;2015(1):pdb.top083519 [PMID: 25561627]
  30. Biophys J. 2019 Dec 3;117(11):2041-2042 [PMID: 31703803]
  31. Curr Opin Genet Dev. 2012 Dec;22(6):527-32 [PMID: 22959150]
  32. Membranes (Basel). 2020 Dec 17;10(12): [PMID: 33348780]
  33. Methods Mol Biol. 2021;2179:145-159 [PMID: 32939719]
  34. Biochemistry. 2005 May 10;44(18):7085-94 [PMID: 15865453]
  35. J Neurosci. 2016 Apr 13;36(15):4276-95 [PMID: 27076425]
  36. Nat Cell Biol. 2019 Aug;21(8):933-939 [PMID: 31358965]
  37. Biophys J. 2008 Oct;95(7):3457-69 [PMID: 18621824]
  38. J Fluoresc. 2022 May;32(3):1031-1038 [PMID: 35254627]
  39. PLoS Genet. 2016 Apr 15;12(4):e1005982 [PMID: 27082444]
  40. Mol Biol Cell. 2004 Oct;15(10):4749-60 [PMID: 15292455]
  41. PLoS One. 2009;4(2):e4547 [PMID: 19234598]
  42. R Soc Open Sci. 2022 Jan 26;9(1):211112 [PMID: 35116146]
  43. Q Rev Biophys. 2015 Aug;48(3):323-87 [PMID: 26314367]
  44. Methods Mol Biol. 2018;1863:107-124 [PMID: 30324594]
  45. Nat Commun. 2021 Mar 26;12(1):1913 [PMID: 33772014]
  46. J Mol Biol. 2018 Nov 2;430(23):4773-4805 [PMID: 30017918]
  47. Annu Rev Biophys. 2016 Jul 5;45:25-47 [PMID: 27145880]
  48. Methods Enzymol. 2021;646:83-113 [PMID: 33453934]
  49. Nature. 2007 Feb 22;445(7130):922-6 [PMID: 17277769]
  50. Cell. 2016 Jan 28;164(3):487-98 [PMID: 26777405]
  51. Chem Phys Lipids. 2008 Jan;151(1):62-5 [PMID: 17986387]
  52. Nat Rev Mol Cell Biol. 2017 May;18(5):285-298 [PMID: 28225081]
  53. FEBS Lett. 1989 Oct 23;257(1):10-6 [PMID: 2680602]
  54. Nucleic Acids Res. 2018 Jul 2;46(W1):W467-W472 [PMID: 29901776]
  55. Traffic. 2012 Dec;13(12):1589-600 [PMID: 22984916]
  56. J Mol Biol. 2021 Apr 30;433(9):166898 [PMID: 33647289]
  57. PLoS One. 2015 May 27;10(5):e0127966 [PMID: 26017223]
  58. Nat Protoc. 2022 Dec;17(12):3056-3079 [PMID: 36064755]
  59. Development. 2005 Sep;132(17):3963-76 [PMID: 16079157]
  60. Methods Enzymol. 2021;646:143-183 [PMID: 33453924]
  61. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10642-7 [PMID: 11535814]
  62. Biophys J. 2007 Mar 15;92(6):2172-83 [PMID: 17208970]
  63. J Cell Biol. 2016 Oct 10;215(1):57-76 [PMID: 27697925]
  64. Methods Mol Biol. 2023;2609:271-293 [PMID: 36515841]
  65. Curr Opin Cell Biol. 2010 Jun;22(3):403-11 [PMID: 20413286]
  66. Biophys J. 2010 Nov 3;99(9):2737-47 [PMID: 21044570]
  67. New Phytol. 2011 Oct;192(2):328-37 [PMID: 21762166]
  68. Rep Prog Phys. 2013 Apr;76(4):046602 [PMID: 23481518]
  69. Biophys J. 2019 Apr 2;116(7):1348-1361 [PMID: 30878198]
  70. Biophys J. 2013 May 7;104(9):2089-97 [PMID: 23663852]
  71. Biophys J. 2018 Oct 2;115(7):1156-1159 [PMID: 30224052]
  72. PLoS Comput Biol. 2014 Jun 05;10(6):e1003629 [PMID: 24901638]
  73. Pharm Res. 2014 Feb;31(2):255-70 [PMID: 24019022]
  74. Biophys J. 1976 Sep;16(9):1055-69 [PMID: 786399]
  75. Nat Protoc. 2007;2(12):3285-98 [PMID: 18079729]
  76. BBA Adv. 2021 Sep 23;1:100026 [PMID: 37082018]
  77. Biophys J. 2020 May 19;118(10):2354-2365 [PMID: 32304636]
  78. Proc Natl Acad Sci U S A. 1974 Feb;71(2):522-5 [PMID: 4360948]
  79. Biochim Biophys Acta. 1974 Nov 15;367(3):282-94 [PMID: 4429678]
  80. Food Chem. 2016 Feb 1;192:660-7 [PMID: 26304396]
  81. Curr Opin Biotechnol. 2005 Feb;16(1):28-34 [PMID: 15722012]
  82. PLoS One. 2010 Mar 23;5(3):e9806 [PMID: 20352102]
  83. Biophys J. 2020 Aug 18;119(4):737-748 [PMID: 32771078]
  84. Neurobiol Dis. 2021 May;152:105291 [PMID: 33556542]
  85. Elife. 2015 Oct 13;4: [PMID: 26459831]
  86. Biophys J. 2007 Sep 1;93(5):1778-86 [PMID: 17416613]
  87. Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2204618119 [PMID: 35969745]
  88. J Microsc. 2021 May;282(2):146-161 [PMID: 33247838]
  89. Biophys J. 2012 Apr 4;102(7):1656-65 [PMID: 22500766]
  90. Cytometry A. 2017 Aug;91(8):810-814 [PMID: 28727252]
  91. Appl Environ Microbiol. 2010 Sep;76(17):5860-9 [PMID: 20639359]
  92. Biophys J. 2018 Mar 13;114(5):1153-1164 [PMID: 29539401]
  93. Biophys J. 2006 Aug 15;91(4):1169-91 [PMID: 16679358]
  94. Science. 1976 Feb 6;191(4226):466-8 [PMID: 1246629]
  95. Curr Opin Cell Biol. 2019 Aug;59:97-103 [PMID: 31125832]
  96. Elife. 2021 Apr 16;10: [PMID: 33860761]
  97. Mol Metab. 2015 Dec 31;5(3):153-163 [PMID: 26977387]
  98. Food Chem. 2012 Jul 15;133(2):551-6 [PMID: 25683432]
  99. J Phys Chem B. 2013 Feb 7;117(5):1241-51 [PMID: 23311513]
  100. iScience. 2022 Sep 07;25(10):105088 [PMID: 36157590]
  101. Small Methods. 2022 Jun;6(6):e2200149 [PMID: 35344286]
  102. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3171-5 [PMID: 11854462]
  103. Cytometry A. 2010 Apr;77(4):366-70 [PMID: 20131402]
  104. Sensors (Basel). 2022 Jun 23;22(13): [PMID: 35808232]
  105. Sci Rep. 2015 Jun 25;5:11655 [PMID: 26108191]
  106. Am J Physiol Cell Physiol. 2022 Aug 1;323(2):C520-C535 [PMID: 35759444]
  107. Biophys J. 2010 Oct 20;99(8):2443-52 [PMID: 20959084]
  108. Nucleic Acids Res. 2012 Aug;40(15):e119 [PMID: 22844090]
  109. Bio Protoc. 2018 Jul 05;8(13):e2913 [PMID: 34395742]
  110. Elife. 2023 Jan 16;12: [PMID: 36645120]
  111. J Math Biol. 2021 Jun 15;83(1):1 [PMID: 34129100]
  112. Biophys J. 1996 Jun;70(6):2767-73 [PMID: 8744314]
  113. Biophys J. 2019 Oct 1;117(7):1285-1300 [PMID: 31540706]
  114. Science. 2012 Oct 26;338(6106):528-31 [PMID: 23112333]
  115. Methods. 2003 Jan;29(1):14-28 [PMID: 12543068]
  116. Am J Physiol Cell Physiol. 2015 Nov 15;309(10):C669-79 [PMID: 26377314]
  117. Biophys J. 1999 May;76(5):2843-51 [PMID: 10233100]
  118. Nat Struct Mol Biol. 2007 Sep;14(9):796-806 [PMID: 17676063]
  119. Biophys Physicobiol. 2018 Jan 19;15:1-7 [PMID: 29450109]
  120. Neuron. 1995 Jun;14(6):1257-64 [PMID: 7541636]
  121. Molecules. 2012 Apr 02;17(4):4047-132 [PMID: 22469598]
  122. Nat Commun. 2018 Apr 20;9(1):1582 [PMID: 29679054]
  123. Development. 2022 Aug 15;149(16): [PMID: 35993388]
  124. Chem Commun (Camb). 2023 Feb 21;59(16):2307-2310 [PMID: 36748184]
  125. J Cell Biol. 2011 May 16;193(4):785-98 [PMID: 21555460]
  126. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6747-51 [PMID: 6387711]
  127. Biophys J. 2008 Dec;95(11):5334-48 [PMID: 18567628]
  128. Biophys Rev. 2019 Oct;11(5):817-831 [PMID: 31628607]
  129. Genetics. 2021 Aug 26;219(1): [PMID: 34125894]
  130. Biophys J. 2007 Apr 15;92(8):2694-703 [PMID: 17259280]
  131. Bull Math Biol. 2017 Mar;79(3):448-497 [PMID: 28101740]
  132. Biophys J. 2018 Oct 2;115(7):1146-1155 [PMID: 30219286]
  133. STAR Protoc. 2022 Jul 31;3(3):101592 [PMID: 35928002]
  134. Curr Opin Cell Biol. 2018 Aug;53:44-51 [PMID: 29787971]
  135. Methods Mol Biol. 2023;2551:395-423 [PMID: 36310217]
  136. Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25126-25136 [PMID: 31757849]
  137. Nat Commun. 2016 Aug 25;7:12562 [PMID: 27558844]
  138. Trends Cell Biol. 2005 Feb;15(2):84-91 [PMID: 15695095]
  139. Methods. 2006 Oct;40(2):183-90 [PMID: 17012031]
  140. Methods Mol Biol. 2017;1563:243-267 [PMID: 28324613]
  141. Elife. 2021 Oct 12;10: [PMID: 34636323]
  142. Biophys J. 2010 Feb 17;98(4):552-9 [PMID: 20159151]
  143. PLoS One. 2016 Jul 07;11(7):e0158457 [PMID: 27387979]
  144. PLoS One. 2017 May 22;12(5):e0178255 [PMID: 28542635]
  145. J Mol Biol. 2016 Dec 4;428(24 Pt A):4776-4791 [PMID: 27534816]
  146. J Vis Exp. 2020 Sep 12;(163): [PMID: 32986025]
  147. Biophys J. 2023 Sep 19;122(18):3722-3737 [PMID: 37353932]
  148. Methods Mol Biol. 2022;2476:31-41 [PMID: 35635695]
  149. Scanning Microsc. 1991 Jun;5(2):357-61; discussion 361-2 [PMID: 1947924]
  150. PLoS One. 2014 Sep 18;9(9):e107730 [PMID: 25233348]
  151. Am J Physiol Cell Physiol. 2020 Jan 1;318(1):C163-C173 [PMID: 31747312]
  152. J Supramol Struct. 1976;5(4):565(417)-576(428) [PMID: 800621]
  153. PLoS One. 2015 May 22;10(5):e0127869 [PMID: 26000610]
  154. J Biomed Opt. 2011 Apr;16(4):046021 [PMID: 21529089]
  155. Cell Rep. 2016 Jan 5;14(1):152-167 [PMID: 26725115]
  156. Nat Cell Biol. 2001 Jun;3(6):E145-7 [PMID: 11389456]
  157. PLoS One. 2012;7(8):e42854 [PMID: 22912750]
  158. Traffic. 2004 Sep;5(9):662-71 [PMID: 15296491]
  159. Cell. 2016 Jun 16;165(7):1686-1697 [PMID: 27212236]
  160. Biophys J. 2008 Jun;94(12):4646-53 [PMID: 18326658]
  161. APL Bioeng. 2022 Jun 29;6(2):020901 [PMID: 35783457]
  162. ACS Biomater Sci Eng. 2022 Mar 14;8(3):1028-1048 [PMID: 35201752]
  163. Nat Rev Mol Cell Biol. 2001 Jun;2(6):444-56 [PMID: 11389468]
  164. Methods Mol Biol. 2022;2537:307-333 [PMID: 35895272]
  165. Biophys J. 2001 Oct;81(4):2226-40 [PMID: 11566793]
  166. Bio Protoc. 2017 Mar 5;7(5): [PMID: 28286807]
  167. Nature. 1974 Feb 15;247(5441):438-41 [PMID: 4818543]
  168. Methods Mol Biol. 2023;2551:225-243 [PMID: 36310206]

Grants

  1. R01 GM138493/NIGMS NIH HHS

MeSH Term

Fluorescence Recovery After Photobleaching
Diffusion
Cytoplasm

Word Cloud

Created with Highcharts 10.0.0FRAPemergedbiomoleculesFluorescencerecoveryphotobleachingonewidelyutilizedtechniquesquantifybindingdiffusionkineticsbiophysicsSinceinceptionmid-1970susedaddressenormousarrayquestionsincludingcharacteristicfeatureslipidraftscellsregulateviscositycytoplasmdynamicsinsidecondensatesformedliquid-liquidphaseseparationperspectivebrieflysummarizehistoryfielddiscussprovenincrediblyversatilepopularNextprovideoverviewextensivebodyknowledgebestpracticesquantitativedataanalysisfollowedrecentexamplesbiologicallessonslearnedusingpowerfulapproachFinallytouchnewdirections andopportunitiesbiophysicistscontributecontinueddevelopmentstill-relevantresearchtoolpastprologue:keepsdelivering50yearslater

Similar Articles

Cited By