MaxCal can infer models from coupled stochastic trajectories of gene expression and cell division.

Andrew Torres, Spencer Cockerell, Michael Phillips, Gábor Balázsi, Kingshuk Ghosh
Author Information
  1. Andrew Torres: Department of Physics and Astronomy, University of Denver, Denver, Colorado.
  2. Spencer Cockerell: Department of Physics and Astronomy, University of Denver, Denver, Colorado.
  3. Michael Phillips: Department of Physics and Astronomy, University of Denver, Denver, Colorado.
  4. Gábor Balázsi: Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York.
  5. Kingshuk Ghosh: Molecular and Cellular Biophysics, University of Denver, Denver, Colorado; Department of Physics and Astronomy, University of Denver, Denver, Colorado. Electronic address: kghosh@du.edu.

Abstract

Gene expression is inherently noisy due to small numbers of proteins and nucleic acids inside a cell. Likewise, cell division is stochastic, particularly when tracking at the level of a single cell. The two can be coupled when gene expression affects the rate of cell division. Single-cell time-lapse experiments can measure both fluctuations by simultaneously recording protein levels inside a cell and its stochastic division. These information-rich noisy trajectory data sets can be harnessed to learn about the underlying molecular and cellular details that are often not known a priori. A critical question is: How can we infer a model given data where fluctuations at two levels-gene expression and cell division-are intricately convoluted? We show the principle of maximum caliber (MaxCal)-integrated within a Bayesian framework-can be used to infer several cellular and molecular details (division rates, protein production, and degradation rates) from these coupled stochastic trajectories (CSTs). We demonstrate this proof of concept using synthetic data generated from a known model. An additional challenge in data analysis is that trajectories are often not in protein numbers, but in noisy fluorescence that depends on protein number in a probabilistic manner. We again show that MaxCal can infer important molecular and cellular rates even when data are in fluorescence, another example of CST with three confounding factors-gene expression noise, cell division noise, and fluorescence distortion-all coupled. Our approach will provide guidance to build models in synthetic biology experiments as well as general biological systems where examples of CSTs are abundant.

References

  1. Biophys J. 2001 Dec;81(6):3116-36 [PMID: 11720979]
  2. Nat Rev Genet. 2005 Jun;6(6):451-64 [PMID: 15883588]
  3. J R Soc Interface. 2013 Aug 28;10(88):20130588 [PMID: 23985733]
  4. Trends Biochem Sci. 2012 Nov;37(11):499-506 [PMID: 22948030]
  5. Biophys J. 2017 Nov 7;113(9):2121-2130 [PMID: 29117534]
  6. Science. 2002 Aug 16;297(5584):1183-6 [PMID: 12183631]
  7. Methods. 2013 Sep 15;63(2):188-99 [PMID: 23820309]
  8. Integr Biol (Camb). 2016 Apr 18;8(4):394-408 [PMID: 26686885]
  9. Nature. 2005 Jul 28;436(7050):588-92 [PMID: 16049495]
  10. J Comput Biol. 2002;9(1):67-103 [PMID: 11911796]
  11. J Phys Chem B. 2007 Mar 8;111(9):2288-92 [PMID: 17295536]
  12. PLoS Comput Biol. 2014 Mar 27;10(3):e1003533 [PMID: 24676102]
  13. Annu Rev Phys Chem. 2020 Apr 20;71:213-238 [PMID: 32075515]
  14. J Chem Phys. 2018 Jan 7;148(1):010901 [PMID: 29306272]
  15. Science. 2022 Aug 12;377(6607):747-751 [PMID: 35951698]
  16. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5123-8 [PMID: 19279212]
  17. Mol Syst Biol. 2009;5:318 [PMID: 19888213]
  18. J Phys Chem B. 2018 May 31;122(21):5666-5677 [PMID: 29406749]
  19. Phys Rev Lett. 2006 May 12;96(18):188101 [PMID: 16712399]
  20. PLoS One. 2012;7(2):e31407 [PMID: 22363638]
  21. J Theor Biol. 1995 Jan 21;172(2):169-85 [PMID: 7891455]
  22. Curr Opin Biotechnol. 2008 Aug;19(4):369-74 [PMID: 18662776]
  23. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 1):031905 [PMID: 21230106]
  24. Mol Biol Cell. 2016 Nov 7;27(22):3601-3615 [PMID: 27654946]
  25. Chembiochem. 2007 Jun 18;8(9):994-9 [PMID: 17503420]
  26. Genome Biol. 2009 Feb 03;10(2):302 [PMID: 19226443]
  27. Science. 2008 Jul 4;321(5885):126-9 [PMID: 18599789]
  28. Am J Phys. 2006 Feb 1;74(2):123-133 [PMID: 23585693]
  29. Nat Genet. 2002 May;31(1):69-73 [PMID: 11967532]
  30. J Theor Biol. 2004 Jul 21;229(2):147-56 [PMID: 15207470]
  31. PLoS Comput Biol. 2012;8(4):e1002480 [PMID: 22511863]
  32. Nat Rev Genet. 2007 Jun;8(6):450-61 [PMID: 17510665]
  33. Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5081-6 [PMID: 18353986]
  34. EMBO J. 2007 Jan 24;26(2):527-37 [PMID: 17245435]
  35. Nature. 2000 Jan 20;403(6767):335-8 [PMID: 10659856]
  36. J Chem Phys. 2006 Jan 28;124(4):044104 [PMID: 16460146]
  37. Mol Pharm. 2015 Feb 2;12(2):322-31 [PMID: 25098838]
  38. Phys Biol. 2019 Mar 07;16(3):031002 [PMID: 30654341]
  39. J Phys Chem B. 2014 Jun 19;118(24):6597-603 [PMID: 24898871]
  40. Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11347-51 [PMID: 20498085]
  41. Science. 2010 Jul 30;329(5991):533-8 [PMID: 20671182]
  42. J Chem Phys. 2010 Jul 21;133(3):034119 [PMID: 20649320]
  43. Nat Methods. 2007 Apr;4(4):319-21 [PMID: 17369835]
  44. Phys Rev Lett. 2009 Jul 31;103(5):050603 [PMID: 19792475]
  45. J Cell Biol. 2009 Oct 5;187(1):81-9 [PMID: 19805630]
  46. Proc Natl Acad Sci U S A. 2012 May 22;109(21):8340-5 [PMID: 22566653]
  47. Biophys J. 2010 Jan 6;98(1):1-11 [PMID: 20074511]
  48. EMBO J. 2001 May 15;20(10):2528-35 [PMID: 11350942]
  49. J Cell Biol. 2011 Nov 14;195(4):563-72 [PMID: 22084306]
  50. Bioinformatics. 2013 Sep 15;29(18):2311-9 [PMID: 23821649]
  51. Science. 2023 Apr 28;380(6643):376-381 [PMID: 37104589]
  52. Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17832-7 [PMID: 21987805]
  53. J Phys Chem B. 2019 Jan 17;123(2):343-355 [PMID: 30507199]
  54. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):052708 [PMID: 25353830]
  55. Entropy (Basel). 2021 Mar 17;23(3): [PMID: 33802879]
  56. Nat Commun. 2016 Apr 21;7:11304 [PMID: 27098003]
  57. Nat Rev Genet. 2009 Dec;10(12):859-71 [PMID: 19898500]
  58. Biophys J. 2017 May 23;112(10):2021-2029 [PMID: 28538142]
  59. Nature. 2000 Jan 20;403(6767):339-42 [PMID: 10659857]
  60. FEBS Lett. 2008 Nov 12;582(27):3776-82 [PMID: 18930050]
  61. J Cell Biol. 2011 Nov 14;195(4):573-82 [PMID: 22084307]
  62. ACS Synth Biol. 2015 Mar 20;4(3):258-64 [PMID: 24967515]
  63. J Phys Chem B. 2011 May 19;115(19):6202-12 [PMID: 21524067]
  64. Nature. 2006 Sep 21;443(7109):355-8 [PMID: 16971952]
  65. Nature. 2004 Jan 29;427(6973):415-8 [PMID: 14749823]
  66. Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2310-5 [PMID: 15701703]
  67. Sci Prog. 2015;98(Pt 3):244-52 [PMID: 26601339]
  68. Mol Syst Biol. 2015 Aug 31;11(8):827 [PMID: 26324468]
  69. Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5163-8 [PMID: 23479622]
  70. PLoS One. 2014 Jul 24;9(7):e102873 [PMID: 25057990]
  71. PLoS Comput Biol. 2010 Mar 05;6(3):e1000696 [PMID: 20221262]
  72. J Biol Chem. 2009 Oct 23;284(43):29283-9 [PMID: 19700405]
  73. Science. 2010 Nov 19;330(6007):1099-102 [PMID: 21097934]
  74. J Chem Phys. 2011 May 21;134(19):195101 [PMID: 21599088]
  75. Am J Physiol. 1998 Feb;274(2):C531-42 [PMID: 9486144]
  76. Curr Opin Cell Biol. 2003 Apr;15(2):221-31 [PMID: 12648679]
  77. EMBO Rep. 2012 Aug;13(8):709-15 [PMID: 22688967]
  78. Nat Rev Genet. 2010 May;11(5):367-79 [PMID: 20395970]
  79. Cell. 2016 Aug 25;166(5):1282-1294.e18 [PMID: 27545349]
  80. Nat Commun. 2019 Jun 24;10(1):2766 [PMID: 31235692]

Grants

  1. R15 GM128162/NIGMS NIH HHS
  2. R35 GM122561/NIGMS NIH HHS

MeSH Term

Bayes Theorem
Cell Division
Proteins
Gene Expression
Stochastic Processes
Models, Biological

Chemicals

Proteins

Word Cloud

Created with Highcharts 10.0.0celldivisioncanexpressiondatastochasticcoupledproteininfernoisymolecularcellularMaxCalratestrajectoriesfluorescencenumbersinsidetwogeneexperimentsfluctuationsdetailsoftenknownmodelshowCSTssyntheticnoisemodelsGeneinherentlyduesmallproteinsnucleicacidsLikewiseparticularlytrackinglevelsingleaffectsrateSingle-celltime-lapsemeasuresimultaneouslyrecordinglevelsinformation-richtrajectorysetsharnessedlearnunderlyingprioricriticalquestion is:givenlevels-genedivision-areintricatelyconvoluted?principlemaximumcaliber-integratedwithinBayesianframework-canusedseveralproductiondegradationdemonstrateproofconceptusinggeneratedadditionalchallengeanalysisdependsnumberprobabilisticmannerimportantevenanotherexampleCSTthreeconfoundingfactors-genedistortion-allapproachwillprovideguidancebuildbiologywellgeneralbiologicalsystemsexamplesabundant

Similar Articles

Cited By