PURPOSE: Our aim was to assess the change of vertebral orientation, expressed in the sagittal plane, in the transversal plane and in the frontal plane, at each level from T1 to S1 between the supine position (like in in a CT scan) and the prone position lying on bolsters like in an OR. METHODS: Thirty-six patients were selected and included for a total number of one hundred and forty-eight vertebral levels. There were 30 females and 6 males. The mean age was 15 years and 9 months. A semi-automatic image processing technique and software (3D slicer), with a custom-made python script add-on, was used for each patient: paired preoperative CT scan and intraoperative cone beam computed tomography (CBCT) scan were processed to acquire complete spinal reconstructions in a consistent 3D coordinate system. The aim was to automatically compute a set of sagittal, transversal, and frontal rotations of each vertebral level of the same patient describing the 3D vertebral rotation between the supine position and the prone position lying on bolsters. RESULTS: For sagittal analysis, the results showed a behavior in the evolution of rotation depending on the level. Between T01 and T10, the rotation was between - 14° and - 8°. Between T10 and L05, the sagittal rotation increased from - 10° up to + 10°. For frontal and transversal analysis, the rotations were under 6.5°. CONCLUSION: These results could be valuable to perform a safe virtual templating: the information given by the virtual templating seems to be more accurate in the transversal plane than in the sagittal plane.
Abe Y, Ito M, Abumi K, Kotani Y, Sudo H, Minami A (2011) A novel cost-effective computer-assisted imaging technology for accurate placement of thoracic pedicle screws: technical note. J Neurosurg Spine 15:479–485. https://doi.org/10.3171/2011.6.SPINE10721
[DOI: 10.3171/2011.6.SPINE10721]
Zhao X, Zhao J, Xie Y, Mi J (2016) The utility of a digital virtual template for junior surgeons in pedicle screw placement in the lumbar spine. BioMed Res Int 2016:1–6. https://doi.org/10.1155/2016/3076025
[DOI: 10.1155/2016/3076025]
Brink RC, Colo D, Schlösser TPC, Vincken KL, van Stralen M, Hui SCN, Shi L, Chu WCW, Cheng JCY, Castelein RM (2017) Upright, prone, and supine spinal morphology and alignment in adolescent idiopathic scoliosis. Scoliosis Spinal Disord 12:6. https://doi.org/10.1186/s13013-017-0111-5
[DOI: 10.1186/s13013-017-0111-5]
Growth and adolescent idiopathic scoliosis: when and how much? - PubMed. https://pubmed.ncbi.nlm.nih.gov/21173616/ . Accessed 24 Nov 2022
Dimeglio A, Canavese F (2012) The growing spine: how spinal deformities influence normal spine and thoracic cage growth. Eur Spine J 21:64–70. https://doi.org/10.1007/s00586-011-1983-3
[DOI: 10.1007/s00586-011-1983-3]
Dimeglio A, Canavese F (2013) Progression or not progression? How to deal with adolescent idiopathic scoliosis during puberty. J Child Orthop 7:43–49. https://doi.org/10.1007/s11832-012-0463-6
[DOI: 10.1007/s11832-012-0463-6]
Preparation posterior procedures. https://surgeryreference.aofoundation.org/spine/deformities/adolescent-idiopathic-scoliosis/preparation/preparation-posterior-procedures . Accessed 24 Nov 2022
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341. https://doi.org/10.1016/j.mri.2012.05.001
[DOI: 10.1016/j.mri.2012.05.001]
Coordinate systems—Slicer Wiki. https://www.slicer.org/wiki/Coordinate_systems . Accessed 9 Mar 2023
Ronckers CM, Land CE, Miller JS, Stovall M, Lonstein JE, Doody MM (2010) Cancer mortality among women frequently exposed to radiographic examinations for spinal disorders. Radiat Res 174:83–90. https://doi.org/10.1667/RR2022.1
[DOI: 10.1667/RR2022.1]
Bone CM, Hsieh GH (2000) The risk of carcinogenesis from radiographs to pediatric orthopaedic patients. J Pediatr Orthop 20:251–254
[DOI: 10.1097/01241398-200003000-00023]
Simony A, Hansen EJ, Christensen SB, Carreon LY, Andersen MO (2016) Incidence of cancer in adolescent idiopathic scoliosis patients treated 25 years previously. Eur Spine J 25:3366–3370. https://doi.org/10.1007/s00586-016-4747-2
[DOI: 10.1007/s00586-016-4747-2]
Lenke LG, Betz RR, Bridwell KH, Clements DH, Harms J, Lowe TG, Shufflebarger HL (1998) Intraobserver and interobserver reliability of the classification of thoracic adolescent idiopathic scoliosis. J Bone Joint Surg Am 80:1097–1106. https://doi.org/10.2106/00004623-199808000-00002
[DOI: 10.2106/00004623-199808000-00002]
Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, Blanke K (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83:1169–1181
[DOI: 10.2106/00004623-200108000-00006]
Lenke LG, Betz RR, Clements D, Merola A, Haher T, Lowe T, Newton P, Bridwell KH, Blanke K (2002) Curve prevalence of a new classification of operative adolescent idiopathic scoliosis: does classification correlate with treatment? Spine 27:604–611. https://doi.org/10.1097/00007632-200203150-00008
[DOI: 10.1097/00007632-200203150-00008]
Duke A, Marchese R, Komatsu DE, Barsi J (2022) Radiation in adolescent idiopathic scoliosis management: estimated cumulative pre-operative, intra-operative, and post-operative exposure. Orthop Res Rev 14:487–493. https://doi.org/10.2147/ORR.S387369
[DOI: 10.2147/ORR.S387369]
Kim YJ, Lenke LG, Bridwell KH, Cho YS, Riew KD (2004) Free hand pedicle screw placement in the thoracic spine: is it safe? Spine 29:333–342. https://doi.org/10.1097/01.brs.0000109983.12113.9b . (Discussion 342)
[DOI: 10.1097/01.brs.0000109983.12113.9b]
Suk S-I (2011) Pedicle screw instrumentation for adolescent idiopathic scoliosis: the insertion technique, the fusion levels and direct vertebral rotation. Clin Orthop Surg 3:89–100. https://doi.org/10.4055/cios.2011.3.2.89
[DOI: 10.4055/cios.2011.3.2.89]
Saarinen AJ, Suominen EN, Helenius L, Syvänen J, Raitio A, Helenius I (2022) Intraoperative 3D imaging reduces pedicle screw related complications and reoperations in adolescents undergoing posterior spinal fusion for idiopathic scoliosis: a retrospective study. Children 9:1129. https://doi.org/10.3390/children9081129
[DOI: 10.3390/children9081129]
Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K (1999) Development of a compact computed tomographic apparatus for dental use. Dento Maxillo Facial Radiol 28:245–248. https://doi.org/10.1038/sj/dmfr/4600448
[DOI: 10.1038/sj/dmfr/4600448]
Tonetti J, Boudissa M, Kerschbaumer G, Seurat O (2020) Role of 3D intraoperative imaging in orthopedic and trauma surgery. Orthop Traumatol Surg Res 106:S19–S25. https://doi.org/10.1016/j.otsr.2019.05.021
[DOI: 10.1016/j.otsr.2019.05.021]
Baldwin KD, Kadiyala M, Talwar D, Sankar WN, Flynn JM, Anari JB (2022) Does intraoperative CT navigation increase the accuracy of pedicle screw placement in pediatric spinal deformity surgery? A systematic review and meta-analysis. Spine Deform 10:19–29. https://doi.org/10.1007/s43390-021-00385-5
[DOI: 10.1007/s43390-021-00385-5]
Presciutti SM, Karukanda T, Lee M (2014) Management decisions for adolescent idiopathic scoliosis significantly affect patient radiation exposure. Spine J Off J North Am Spine Soc 14:1984–1990. https://doi.org/10.1016/j.spinee.2013.11.055
[DOI: 10.1016/j.spinee.2013.11.055]
Law M, Ma W-K, Lau D, Chan E, Yip L, Lam W (2016) Cumulative radiation exposure and associated cancer risk estimates for scoliosis patients: impact of repetitive full spine radiography. Eur J Radiol 85:625–628. https://doi.org/10.1016/j.ejrad.2015.12.032
[DOI: 10.1016/j.ejrad.2015.12.032]
Abul-Kasim K, Overgaard A, Maly P, Ohlin A, Gunnarsson M, Sundgren PC (2009) Low-dose helical computed tomography (CT) in the perioperative workup of adolescent idiopathic scoliosis. Eur Radiol 19:610–618. https://doi.org/10.1007/s00330-008-1178-4
[DOI: 10.1007/s00330-008-1178-4]
Abul-Kasim K (2010) Low-dose spine CT: optimisation and clinical implementation. Radiat Prot Dosimetry 139:169–172. https://doi.org/10.1093/rpd/ncp306
[DOI: 10.1093/rpd/ncp306]
Kalra MK, Quick P, Singh S, Sandborg M (1987) Persson A (2013) Whole spine CT for evaluation of scoliosis in children: feasibility of sub-milliSievert scanning protocol. Acta Radiol Stockh Swed 54:226–230. https://doi.org/10.1258/ar.2012.110625
[DOI: 10.1258/ar.2012.110625]
Yasuda T, Hasegawa T, Yamato Y, Togawa D, Kobayashi S, Yoshida G, Banno T, Arima H, Oe S, Matsuyama Y (2018) Effect of position on lumbar lordosis in patients with adult spinal deformity. J Neurosurg Spine 29:530–534. https://doi.org/10.3171/2018.3.SPINE1879
[DOI: 10.3171/2018.3.SPINE1879]
[Functional anatomy of the lumbosacral spine] - PubMed. https://pubmed.ncbi.nlm.nih.gov/5407554/ . Accessed 30 Nov 2022
Brink RC, Homans JF, de Reuver S, van Stralen M, Schlösser TPC, Viergever MA, Chu WCW, Ng BKW, Castelein RM, Cheng JCY (2020) A computed tomography-based spatial reference for pedicle screw placement in adolescent idiopathic scoliosis. Spine Deform 8:67–76. https://doi.org/10.1007/s43390-020-00032-5
[DOI: 10.1007/s43390-020-00032-5]
Rampersaud YR, Simon DA, Foley KT (2001) Accuracy requirements for image-guided spinal pedicle screw placement. Spine 26:352–359. https://doi.org/10.1097/00007632-200102150-00010
[DOI: 10.1097/00007632-200102150-00010]
Karaikovic EE, Yingsakmongkol W, Gaines RW (2001) Accuracy of cervical pedicle screw placement using the funnel technique. Spine 26:2456–2462. https://doi.org/10.1097/00007632-200111150-00012
[DOI: 10.1097/00007632-200111150-00012]
Vialle R, Zeller R, Gaines RW (2014) The “slide technique”: an improvement on the “funnel technique” for safe pedicle screw placement in the thoracic spine. Eur Spine J 23:452–456. https://doi.org/10.1007/s00586-014-3342-7
[DOI: 10.1007/s00586-014-3342-7]
Viau M, Tarbox BB, Wonglertsiri S, Karaikovic EE, Yingsakmongkol W, Gaines RW (2002) Thoracic pedicle screw instrumentation using the “Funnel Technique”: part 2. Clinical experience J Spinal Disord Tech 15:450–453. https://doi.org/10.1097/00024720-200212000-00002
[DOI: 10.1097/00024720-200212000-00002]
Yingsakmonkol W, Karaikovic E, Gaines RW (2002) The accuracy of pedicle screw placement in the thoracic spine using the “Funnel Technique”: part 1. A cadaveric study. J Spinal Disord Tech 15:445–449. https://doi.org/10.1097/00024720-200212000-00001
[DOI: 10.1097/00024720-200212000-00001]
Baba S, Kawaguchi K, Itamoto K, Watanabe T, Hayashida M, Mae T, Nakashima Y, Kato G (2020) Use of an inertial measurement unit sensor in pedicle screw placement improves trajectory accuracy. PLoS ONE 15:e0242512. https://doi.org/10.1371/journal.pone.0242512
[DOI: 10.1371/journal.pone.0242512]