LM-DTI: a tool of predicting drug-target interactions using the node2vec and network path score methods.

Jianwei Li, Yinfei Wang, Zhiguang Li, Hongxin Lin, Baoqin Wu
Author Information
  1. Jianwei Li: School of Artificial Intelligence, Institute of Computational Medicine, Hebei University of Technology, Tianjin, China.
  2. Yinfei Wang: School of Artificial Intelligence, Institute of Computational Medicine, Hebei University of Technology, Tianjin, China.
  3. Zhiguang Li: School of Artificial Intelligence, Institute of Computational Medicine, Hebei University of Technology, Tianjin, China.
  4. Hongxin Lin: School of Artificial Intelligence, Institute of Computational Medicine, Hebei University of Technology, Tianjin, China.
  5. Baoqin Wu: School of Artificial Intelligence, Institute of Computational Medicine, Hebei University of Technology, Tianjin, China.

Abstract

Drug-target interaction (DTI) prediction is a key step in drug function discovery and repositioning. The emergence of large-scale heterogeneous biological networks provides an opportunity to identify drug-related target genes, which led to the development of several computational methods for DTI prediction. Considering the limitations of conventional computational methods, a novel tool named LM-DTI based on integrated information related to lncRNAs and miRNAs was proposed, which adopted the graph embedding (node2vec) and the network path score methods. First, LM-DTI innovatively constructed a heterogeneous information network containing eight networks composed of four types of nodes (drug, target, lncRNA, and miRNA). Next, the node2vec method was used to obtain feature vectors of drug as well as target nodes, and the path score vector of each drug-target pair was calculated using the DASPfind method. Finally, the feature vectors and path score vectors were merged and input into the XGBoost classifier to predict potential drug-target interactions. The 10-fold cross validations evaluate the classification accuracies of the LM-DTI. The prediction performance of LM-DTI in AUPR reached 0.96, which showed a significant improvement compared with those of conventional tools. The validity of LM-DTI has also been verified by manually searching literature and various databases. LM-DTI is scalable and computing efficient; thus representing a powerful drug relocation tool that can be accessed for free at http://www.lirmed.com:5038/lm_dti.

Keywords

References

  1. J Cheminform. 2021 Sep 22;13(1):71 [PMID: 34551818]
  2. Brief Bioinform. 2020 Jan 17;21(1):182-197 [PMID: 30535359]
  3. Sci Rep. 2017 Dec 18;7(1):17731 [PMID: 29255285]
  4. J Cheminform. 2020 Jul 22;12(1):46 [PMID: 33431024]
  5. Nucleic Acids Res. 2020 Jan 8;48(D1):D148-D154 [PMID: 31647101]
  6. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D431-3 [PMID: 14681450]
  7. Nat Rev Drug Discov. 2011 Jun 24;10(7):507-19 [PMID: 21701501]
  8. J Cheminform. 2020 Jun 29;12(1):44 [PMID: 33431036]
  9. Sci Rep. 2017 Jan 12;7:40376 [PMID: 28079135]
  10. Med Chem. 2007 Jan;3(1):107-13 [PMID: 17266630]
  11. Med Res Rev. 2006 Sep;26(5):531-68 [PMID: 16758486]
  12. PLoS One. 2012;7(7):e41064 [PMID: 22815915]
  13. Nat Commun. 2017 Sep 18;8(1):573 [PMID: 28924171]
  14. PLoS Comput Biol. 2016 Feb 12;12(2):e1004760 [PMID: 26872142]
  15. Bioinformatics. 2020 Feb 15;36(4):1241-1251 [PMID: 31584634]
  16. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W652-6 [PMID: 20460463]
  17. Bioinformatics. 2013 Feb 1;29(3):409-11 [PMID: 23220571]
  18. J Biomed Inform. 2019 May;93:103159 [PMID: 30926470]
  19. PLoS Comput Biol. 2019 Jun 14;15(6):e1007129 [PMID: 31199797]
  20. PeerJ Comput Sci. 2021 Feb 18;7:e341 [PMID: 33816992]
  21. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D354-7 [PMID: 16381885]
  22. Front Genet. 2019 May 31;10:459 [PMID: 31214240]
  23. Expert Opin Drug Discov. 2015 Dec;10(12):1333-45 [PMID: 26429153]
  24. Nat Methods. 2014 Mar;11(3):333-7 [PMID: 24464287]
  25. Brief Bioinform. 2021 Mar 22;22(2):1513-1514 [PMID: 33693457]
  26. J Cheminform. 2016 Mar 16;8:15 [PMID: 26985240]
  27. Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361 [PMID: 27899662]
  28. Bioinformatics. 2009 Sep 15;25(18):2397-403 [PMID: 19605421]
  29. Bioinformatics. 2020 Jan 15;36(2):603-610 [PMID: 31368482]
  30. Bioinformatics. 2008 Jul 1;24(13):i232-40 [PMID: 18586719]
  31. Database (Oxford). 2017 Jan 1;2017: [PMID: 29220444]
  32. In Silico Pharmacol. 2013 Dec 05;1:17 [PMID: 25505661]
  33. IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2208-2218 [PMID: 33956632]
  34. KDD. 2016 Aug;2016:855-864 [PMID: 27853626]
  35. Nucleic Acids Res. 2008 Jan;36(Database issue):D919-22 [PMID: 17942422]
  36. Nat Commun. 2019 Oct 30;10(1):4941 [PMID: 31666519]
  37. Nucleic Acids Res. 2008 Jan;36(Database issue):D901-6 [PMID: 18048412]
  38. Bioinformatics. 2018 Apr 1;34(7):1164-1173 [PMID: 29186331]
  39. PLoS One. 2012;7(3):e33174 [PMID: 22432004]
  40. Molecules. 2022 Aug 12;27(16): [PMID: 36014371]
  41. Brief Bioinform. 2016 Jul;17(4):696-712 [PMID: 26283676]
  42. Chem Soc Rev. 2013 Mar 7;42(5):2130-41 [PMID: 23288298]
  43. Bioinformatics. 2020 May 1;36(9):2805-2812 [PMID: 31971579]
  44. Nucleic Acids Res. 2019 Jan 8;47(D1):D140-D144 [PMID: 30380072]
  45. RNA Biol. 2019 Nov;16(11):1586-1591 [PMID: 31390943]
  46. Nucleic Acids Res. 2020 Jan 8;48(D1):D160-D165 [PMID: 31670377]
  47. Br J Pharmacol. 2016 Dec;173(23):3372-3385 [PMID: 27646592]
  48. BMC Bioinformatics. 2016 Jan 22;17:46 [PMID: 26801218]

Word Cloud

Created with Highcharts 10.0.0LM-DTInetworkpathscoredrugmethodsnode2vecdrug-targetpredictionheterogeneoustargettoolinformationvectorsinteractionDTInetworkscomputationalconventionalnodesmethodfeatureusingXGBoostinteractionsDrug-targetkeystepfunctiondiscoveryrepositioningemergencelarge-scalebiologicalprovidesopportunityidentifydrug-relatedgenesleddevelopmentseveralConsideringlimitationsnovelnamedbasedintegratedrelatedlncRNAsmiRNAsproposedadoptedgraphembeddingFirstinnovativelyconstructedcontainingeightcomposedfourtypeslncRNAmiRNANextusedobtainwellvectorpaircalculatedDASPfindFinallymergedinputclassifierpredictpotential10-foldcrossvalidationsevaluateclassificationaccuraciesperformanceAUPRreached096showedsignificantimprovementcomparedtoolsvalidityalsoverifiedmanuallysearchingliteraturevariousdatabasesscalablecomputingefficientthusrepresentingpowerfulrelocationcanaccessedfreehttp://wwwlirmedcom:5038/lm_dtiLM-DTI:predicting

Similar Articles

Cited By