Evaluation of the Antibacterial Activity of the Peptide Fractions Extracted from the Hemolymph of (Diptera: Stratiomyidae).

Carmen Scieuzo, Fabiana Giglio, Roberta Rinaldi, Marilena E Lekka, Flora Cozzolino, Vittoria Monaco, Maria Monti, Rosanna Salvia, Patrizia Falabella
Author Information
  1. Carmen Scieuzo: Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy. ORCID
  2. Fabiana Giglio: Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy. ORCID
  3. Roberta Rinaldi: Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy. ORCID
  4. Marilena E Lekka: Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece. ORCID
  5. Flora Cozzolino: Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy. ORCID
  6. Vittoria Monaco: Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy. ORCID
  7. Maria Monti: Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy. ORCID
  8. Rosanna Salvia: Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy. ORCID
  9. Patrizia Falabella: Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy. ORCID

Abstract

Antimicrobial peptides (AMPs) are a chemically and structurally heterogeneous family of molecules produced by a large variety of living organisms, whose expression is predominant in the sites most exposed to microbial invasion. One of the richest natural sources of AMPs is insects which, over the course of their very long evolutionary history, have adapted to numerous and different habitats by developing a powerful innate immune system that has allowed them to survive but also to assert themselves in the new environment. Recently, due to the increase in antibiotic-resistant bacterial strains, interest in AMPs has risen. In this work, we detected AMPs in the hemolymph of (Diptera, Stratiomyidae) larvae, following infection with (Gram negative) or (Gram positive) and from uninfected larvae. Peptide component, isolated via organic solvent precipitation, was analyzed by microbiological techniques. Subsequent mass spectrometry analysis allowed us to specifically identify peptides expressed in basal condition and peptides differentially expressed after bacterial challenge. We identified 33 AMPs in all the analyzed samples, of which 13 are specifically stimulated by Gram negative and/or Gram positive bacterial challenge. AMPs mostly expressed after bacterial challenge could be responsible for a more specific activity.

Keywords

References

  1. Biol Cell. 2003 Jan-Feb;95(1):53-7 [PMID: 12753953]
  2. Insect Sci. 2022 Nov 26;: [PMID: 36433821]
  3. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  4. Clin Microbiol Rev. 2006 Jul;19(3):491-511 [PMID: 16847082]
  5. Antimicrob Agents Chemother. 2015 Mar;59(3):1728-37 [PMID: 25583713]
  6. Front Cell Infect Microbiol. 2019 Apr 30;9:128 [PMID: 31114762]
  7. Insects. 2020 Oct 15;11(10): [PMID: 33076349]
  8. Front Public Health. 2020 Feb 28;8:26 [PMID: 32257985]
  9. Sci Rep. 2022 Apr 22;12(1):6613 [PMID: 35459772]
  10. Dev Comp Immunol. 2014 Jan;42(1):25-35 [PMID: 23721820]
  11. PLoS One. 2011 Mar 29;6(3):e18109 [PMID: 21479226]
  12. Biochem J. 2016 Oct 1;473(19):3205-19 [PMID: 27486258]
  13. Prog Lipid Res. 2012 Apr;51(2):149-77 [PMID: 22245454]
  14. Pathogens. 2013 Mar 19;2(1):177-92 [PMID: 25436887]
  15. PLoS One. 2017 Jan 5;12(1):e0169582 [PMID: 28056070]
  16. Insects. 2021 Sep 11;12(9): [PMID: 34564254]
  17. Sci Rep. 2022 May 16;12(1):8084 [PMID: 35577828]
  18. Annu Rev Immunol. 1995;13:61-92 [PMID: 7612236]
  19. Int J Mol Sci. 2020 Apr 01;21(7): [PMID: 32244587]
  20. Biochim Biophys Acta Gene Regul Mech. 2020 May;1863(5):194493 [PMID: 32014611]
  21. Biochim Biophys Acta. 2015 Jan;1848(1 Pt A):8-15 [PMID: 25268681]
  22. PLoS One. 2017 Nov 29;12(11):e0187914 [PMID: 29186139]
  23. Peptides. 2007 Mar;28(3):533-46 [PMID: 17194500]
  24. Parasit Vectors. 2015 Feb 04;8:71 [PMID: 25649358]
  25. J Arthropod Borne Dis. 2016 Oct 04;10(4):519-527 [PMID: 28032104]
  26. Exp Dermatol. 2016 Mar;25(3):167-73 [PMID: 26738772]
  27. J Econ Entomol. 1992 Dec;85(6):2291-4 [PMID: 1464690]
  28. Appl Microbiol Biotechnol. 2016 Sep;100(17):7397-405 [PMID: 27418360]
  29. Int J Pept. 2009;2009: [PMID: 20721297]
  30. Curr Pharm Des. 2022;28(35):2856-2866 [PMID: 35980058]
  31. J Intern Med. 2008 Jul;264(1):4-16 [PMID: 18397243]
  32. Invertebrate Surviv J. 2009 Jun 1;6(2):163-174 [PMID: 21625362]
  33. Dev Comp Immunol. 2016 May;58:102-18 [PMID: 26695127]
  34. Front Chem. 2018 Jun 05;6:204 [PMID: 29922648]
  35. PLoS One. 2015 Jul 15;10(7):e0130788 [PMID: 26177023]
  36. EMBO J. 1990 Aug;9(8):2507-15 [PMID: 2369900]
  37. Vet Res. 2001 May-Aug;32(3-4):201-25 [PMID: 11432414]
  38. Dev Comp Immunol. 2015 Sep;52(1):98-106 [PMID: 25956195]
  39. Biology (Basel). 2022 Dec 22;12(1): [PMID: 36671718]
  40. Biotechnol Adv. 2018 Mar - Apr;36(2):415-429 [PMID: 29330093]
  41. J Cell Sci. 2011 May 1;124(Pt 9):1373-82 [PMID: 21502134]
  42. Sci Rep. 2020 Oct 9;10(1):16875 [PMID: 33037295]
  43. Dev Comp Immunol. 2018 Jan;78:141-148 [PMID: 28966127]
  44. Biosci Biotechnol Biochem. 2008 Aug;72(8):1992-8 [PMID: 18685215]
  45. Sci Rep. 2020 Nov 10;10(1):19448 [PMID: 33173088]
  46. J Immunol. 2016 Feb 15;196(4):1799-809 [PMID: 26800870]
  47. Med Res Rev. 2013 Jan;33(1):190-234 [PMID: 21922503]
  48. Helicobacter. 2019 Feb;24(1):e12555 [PMID: 30440101]
  49. Peptides. 2012 Oct;37(2):207-15 [PMID: 22800692]
  50. Microbiol Spectr. 2022 Feb 23;10(1):e0166421 [PMID: 34985302]
  51. Insects. 2021 Dec 30;13(1): [PMID: 35055884]
  52. Insects. 2022 Jan 29;13(2): [PMID: 35206718]
  53. Biochem Biophys Res Commun. 2016 Apr 29;473(2):511-6 [PMID: 27012208]
  54. Nat Rev Microbiol. 2008 Apr;6(4):302-13 [PMID: 18327270]
  55. Dev Comp Immunol. 2010 Oct;34(10):1129-36 [PMID: 20558200]
  56. Curr Issues Mol Biol. 2021 Dec 21;44(1):1-13 [PMID: 35723380]
  57. Sci Rep. 2017 Dec 1;7(1):16718 [PMID: 29196622]
  58. Protein Pept Lett. 2005 Jan;12(1):3-11 [PMID: 15638797]
  59. Peptides. 2007 Jun;28(6):1304-10 [PMID: 17521774]
  60. Cell Signal. 2009 Feb;21(2):186-95 [PMID: 18790716]
  61. Cell Mol Life Sci. 2021 May;78(9):4259-4282 [PMID: 33595669]
  62. Nat Commun. 2019 Oct 4;10(1):4538 [PMID: 31586049]
  63. FEMS Microbiol Rev. 2021 Jan 8;45(1): [PMID: 32876664]
  64. Eur J Clin Microbiol Infect Dis. 2015 Jan;34(1):197-204 [PMID: 25169965]
  65. Front Cell Infect Microbiol. 2021 Jun 14;11:668632 [PMID: 34195099]
  66. Innate Immun. 2015 May;21(4):392-405 [PMID: 25114180]
  67. Hematology Am Soc Hematol Educ Program. 2013;2013:428-32 [PMID: 24319215]
  68. Insect Mol Biol. 2003 Oct;12(5):441-52 [PMID: 12974949]
  69. Curr Eye Res. 2005 Jul;30(7):505-15 [PMID: 16020284]

Grants

  1. PRIN2017, protocol Prot. 2017AHTCK7/Italian Ministry University and Research
  2. PO FESR, BASILICATA 2014-2020 "AAA: SAFE SOS" D.D. 12AF.2020/D.01255-9/11/2020/Basilicata Region

Word Cloud

Created with Highcharts 10.0.0AMPsbacterialGrampeptidesexpressedchallengeallowedStratiomyidaelarvaenegativepositivePeptideanalyzedspecificallyAntimicrobialchemicallystructurallyheterogeneousfamilymoleculesproducedlargevarietylivingorganismswhoseexpressionpredominantsitesexposedmicrobialinvasionOnerichestnaturalsourcesinsectscourselongevolutionaryhistoryadaptednumerousdifferenthabitatsdevelopingpowerfulinnateimmunesystemsurvivealsoassertnewenvironmentRecentlydueincreaseantibiotic-resistantstrainsinterestrisenworkdetectedhemolymphDipterafollowinginfectionuninfectedcomponentisolatedviaorganicsolventprecipitationmicrobiologicaltechniquesSubsequentmassspectrometryanalysisusidentifybasalconditiondifferentiallyidentified33samples13stimulatedand/ormostlyresponsiblespecificactivityEvaluationAntibacterialActivityFractionsExtractedHemolymphDiptera:EscherichiacoliMicrococcusflavusantibioticresistanceblacksoldierfly

Similar Articles

Cited By