Persistence of spp. in Poultry Flocks after Disinfection, Virulence, and Antimicrobial Resistance Traits of Recovered Isolates.

Manel Gharbi, Awatef Béjaoui, Safa Hamrouni, Amel Arfaoui, Abderrazak Maaroufi
Author Information
  1. Manel Gharbi: Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia.
  2. Awatef Béjaoui: Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia.
  3. Safa Hamrouni: Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia.
  4. Amel Arfaoui: Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia.
  5. Abderrazak Maaroufi: Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia.

Abstract

To investigate the persistence risk of spp. in poultry farms, and to study the virulence and antimicrobial resistance characteristics in the recovered strains, we collected 362 samples from breeding hen flocks, before and after disinfection. The virulence factors were investigated by targeting the genes; , , , , , , , , , , , , and by PCR. Antimicrobial susceptibility was tested and genes encoding antibiotic resistance were investigated by PCR and MAMA-PCR. Among the analyzed samples, 167 (46.13%) were positive for . They were detected in 38.7% (38/98) and 3% (3/98) of environment samples before and after disinfection, respectively, and in 126 (75.9%) out of 166 feces samples. In total, 78 and 89 isolates were identified and further studied. All isolates were resistant to macrolids, tetracycline, quinolones, and chloramphenicol. However, lower rates were observed for beta-lactams [ampicillin (62.87%), amoxicillin-clavulanic acid (47.3%)] and gentamicin (0.6%). The and the genes were detected in 90% of resistant isolates. The gene and the specific mutations in the were detected in 87% and 73.5% of isolates, respectively. The A2075G and the Thr-86-Ile mutations were detected in 85% and 73.5% of macrolide and quinolone-resistant isolates, respectively. All isolates carried the and genes. The , and genes were frequent in both (89%, 89%, and 90%, respectively) and (89%, 84%, and 90%). Our findings highlight the high occurrence of strains exhibiting antimicrobial resistance with potential virulence traits in the avian environment. Thus, the improvement of biosecurity measures in poultry farms is essential to control bacterial infection persistence and to prevent the spread of virulent and resistant strains.

Keywords

References

  1. Heliyon. 2019 Nov 14;5(11):e02814 [PMID: 31763476]
  2. Poult Sci. 2005 Dec;84(12):1851-6 [PMID: 16479940]
  3. Avian Pathol. 1992;21(2):189-213 [PMID: 18670933]
  4. J Microbiol Immunol Infect. 2022 Dec;55(6 Pt 2):1273-1282 [PMID: 34340908]
  5. J Appl Microbiol. 2001 Aug;91(2):255-67 [PMID: 11473590]
  6. J Clin Microbiol. 1997 Mar;35(3):759-63 [PMID: 9041429]
  7. J Clin Microbiol. 1999 Oct;37(10):3276-80 [PMID: 10488192]
  8. Front Microbiol. 2018 May 17;9:1014 [PMID: 29867900]
  9. Poult Sci. 2022 Jul;101(7):101909 [PMID: 35551000]
  10. Front Microbiol. 2018 Aug 22;9:1906 [PMID: 30186251]
  11. Ital J Food Saf. 2016 Feb 15;5(1):5495 [PMID: 27800429]
  12. Transbound Emerg Dis. 2019 Jan;66(1):56-65 [PMID: 29959817]
  13. Food Microbiol. 2015 Jun;48:99-108 [PMID: 25790997]
  14. Avian Dis. 2015 Jun;59(2):185-200 [PMID: 26473668]
  15. Poult Sci. 2014 Jun;93(6):1578-86 [PMID: 24879708]
  16. Poult Sci. 2007 Jun;86(6):1223-8 [PMID: 17495096]
  17. Antibiotics (Basel). 2020 Jun 08;9(6): [PMID: 32521746]
  18. Foodborne Pathog Dis. 2018 Nov;15(11):698-700 [PMID: 30096008]
  19. Infect Immun. 2000 Dec;68(12):6535-41 [PMID: 11083762]
  20. Epidemiol Infect. 1996 Oct;117(2):245-50 [PMID: 8870621]
  21. Avian Dis. 2011 Mar;55(1):103-5 [PMID: 21500644]
  22. FEMS Microbiol Lett. 2000 Sep 1;190(1):1-7 [PMID: 10981681]
  23. Clin Microbiol Infect. 2012 Mar;18(3):268-81 [PMID: 21793988]
  24. J Appl Microbiol. 2006;100(1):153-60 [PMID: 16405695]
  25. FEMS Immunol Med Microbiol. 2008 Mar;52(2):260-6 [PMID: 18248435]
  26. Biochem Med (Zagreb). 2013;23(2):143-9 [PMID: 23894860]
  27. Poult Sci. 2018 Feb 1;97(2):607-619 [PMID: 29161444]
  28. Epidemiol Infect. 1998 Aug;121(1):57-66 [PMID: 9747756]
  29. Vet Microbiol. 2008 Apr 30;128(3-4):313-26 [PMID: 18077112]
  30. Front Microbiol. 2012 Feb 24;3:58 [PMID: 22375138]
  31. Res Microbiol. 1996 Nov-Dec;147(9):707-18 [PMID: 9296105]
  32. Lett Appl Microbiol. 2005;41(4):297-302 [PMID: 16162134]
  33. Food Microbiol. 2006 Aug;23(5):453-60 [PMID: 16943037]
  34. Biomed Res Int. 2018 Dec 23;2018:7943786 [PMID: 30671471]
  35. Prev Vet Med. 2020 Jul;180:105034 [PMID: 32460154]
  36. Vet Q. 1997 Sep;19(3):113-7 [PMID: 9323851]
  37. Braz J Microbiol. 2020 Dec;51(4):2021-2032 [PMID: 32514993]
  38. Iran J Vet Res. 2019 Fall;20(4):283-288 [PMID: 32042293]
  39. J Microbiol Methods. 2005 Oct;63(1):99-103 [PMID: 15927294]
  40. Antibiotics (Basel). 2020 Jan 21;9(2): [PMID: 31973224]
  41. Int J Environ Res Public Health. 2018 May 06;15(5): [PMID: 29734778]
  42. Eur J Microbiol Immunol (Bp). 2012 Mar;2(1):61-5 [PMID: 24611122]
  43. J Microbiol. 2017 Jan;55(1):13-20 [PMID: 28035601]
  44. Vector Borne Zoonotic Dis. 2012 Feb;12(2):89-98 [PMID: 22133236]
  45. Lett Appl Microbiol. 1999 Dec;29(6):406-10 [PMID: 10664985]
  46. J Appl Microbiol. 2012 Aug;113(2):294-307 [PMID: 22672511]
  47. EFSA J. 2018 Dec 12;16(12):e05500 [PMID: 32625785]
  48. J Vet Med Sci. 2009 Sep;71(9):1247-9 [PMID: 19801909]
  49. J Clin Microbiol. 1999 Mar;37(3):510-7 [PMID: 9986804]
  50. Emerg Infect Dis. 2016 Jul;22(7):1208-15 [PMID: 27314748]
  51. Foods. 2022 Nov 08;11(22): [PMID: 36429146]
  52. J Antimicrob Chemother. 2005 Apr;55(4):452-60 [PMID: 15743900]
  53. Appl Environ Microbiol. 2013 Jan;79(1):393-5 [PMID: 23087035]
  54. J Med Microbiol. 2003 Apr;52(Pt 4):345-348 [PMID: 12676874]
  55. Foodborne Pathog Dis. 2013 Sep;10(9):764-70 [PMID: 23789768]
  56. J Appl Microbiol. 2017 May;122(5):1348-1356 [PMID: 28194914]
  57. Mar Environ Res. 2019 Apr;146:35-45 [PMID: 30910251]
  58. Am J Obstet Gynecol. 2002 Jun;186(6):1160-6 [PMID: 12066091]
  59. Foodborne Pathog Dis. 2018 Aug;15(8):506-516 [PMID: 30124342]
  60. Int J Antimicrob Agents. 2003 Apr;21(4):364-91 [PMID: 12672587]

Word Cloud

Created with Highcharts 10.0.0isolatesresistancegenesvirulencesamplesdetectedrespectivelystrainsenvironmentresistant90%89%persistenceriskspppoultryfarmsantimicrobialbreedingdisinfectionfactorsinvestigatedPCRAntimicrobialantibiotic3%87%mutations735%investigatestudycharacteristicsrecoveredcollected362henflockstargetingsusceptibilitytestedencodingMAMA-PCRAmonganalyzed1674613%positive387%38/983/98126759%166fecestotal7889identifiedstudiedmacrolidstetracyclinequinoloneschloramphenicolHoweverlowerratesobservedbeta-lactams[ampicillin62amoxicillin-clavulanicacid47]gentamicin06%genespecificA2075GThr-86-Ile85%macrolidequinolone-resistantcarriedfrequent84%findingshighlighthighoccurrenceexhibitingpotentialtraitsavianThusimprovementbiosecuritymeasuresessentialcontrolbacterialinfectionpreventspreadvirulentPersistencePoultryFlocksDisinfectionVirulenceResistanceTraitsRecoveredIsolateshenscampylobactermechanisms

Similar Articles

Cited By