Identification of Key Genes Associated with Heat Stress in Rats by Weighted Gene Co-Expression Network Analysis.

Fan Zhang, Jinhuan Dou, Xiuxin Zhao, Hanpeng Luo, Longgang Ma, Lei Wang, Yachun Wang
Author Information
  1. Fan Zhang: College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
  2. Jinhuan Dou: College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
  3. Xiuxin Zhao: College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. ORCID
  4. Hanpeng Luo: College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
  5. Longgang Ma: College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. ORCID
  6. Lei Wang: College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
  7. Yachun Wang: College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. ORCID

Abstract

Heat stress has been a big challenge for animal survival and health due to global warming. However, the molecular processes driving heat stress response were unclear. In this study, we exposed the control group rats ( = 5) at 22 °C and the other three heat stress groups (five rats in each group) at 42 °C lasting 30, 60, and 120 min, separately. We performed RNA sequencing in the adrenal glands and liver and detected the levels of hormones related to heat stress in the adrenal gland, liver, and blood tissues. Weighted gene co-expression network analysis (WGCNA) was also performed. Results showed that rectal temperature and adrenal corticosterone levels were significantly negatively related to genes in the black module, which was significantly enriched in thermogenesis and RNA metabolism. The genes in the green-yellow module were strongly positively associated with rectal temperature and dopamine, norepinephrine, epinephrine, and corticosterone levels in the adrenal glands and were enriched in transcriptional regulatory activities under stress. Finally, 17 and 13 key genes in the black and green-yellow modules were identified, respectively, and shared common patterns of changes. Methyltransferase 3 (), poly(ADP-ribose) polymerase 2 (), and zinc finger protein 36-like 1 () occupied pivotal positions in the protein-protein interaction network and were involved in a number of heat stress-related processes. Therefore, , and could be considered candidate genes for heat stress regulation. Our findings shed new light on the molecular processes underpinning heat stress.

Keywords

References

  1. EMBO Rep. 2011 Jul 01;12(7):673-81 [PMID: 21597468]
  2. Neuroscience. 2019 Feb 10;399:65-76 [PMID: 30579833]
  3. Front Genet. 2021 Apr 09;12:651979 [PMID: 33897767]
  4. Res Vet Sci. 2019 Feb;122:102-110 [PMID: 30481676]
  5. J Dairy Sci. 1973 Feb;56(2):189-94 [PMID: 4690246]
  6. Indian J Med Res. 2012;135:233-9 [PMID: 22446867]
  7. Front Physiol. 2023 Feb 06;14:1122414 [PMID: 36814479]
  8. Oxid Med Cell Longev. 2022 Jun 24;2022:4201287 [PMID: 35783188]
  9. DNA Repair (Amst). 2004 Jun 3;3(6):581-91 [PMID: 15135726]
  10. Nucleic Acids Res. 2016 Apr 7;44(6):e60 [PMID: 26673720]
  11. Genes (Basel). 2020 Mar 13;11(3): [PMID: 32183190]
  12. Int J Hyperthermia. 2008 Feb;24(1):17-29 [PMID: 18214766]
  13. Epigenetics. 2016 Nov;11(11):804-818 [PMID: 27611852]
  14. Anim Front. 2018 Oct 29;9(1):12-19 [PMID: 32002234]
  15. Animal. 2010 Jul;4(7):1167-83 [PMID: 22444615]
  16. J Anim Sci. 1972 Nov;35(5):1005-10 [PMID: 5085291]
  17. Annu Rev Anim Biosci. 2015;3:513-32 [PMID: 25387108]
  18. Br J Dermatol. 2018 Jun;178(6):1246-1256 [PMID: 28714085]
  19. Innovation (Camb). 2021 Jul 01;2(3):100141 [PMID: 34557778]
  20. Radiat Res. 1978 Oct;76(1):48-59 [PMID: 569879]
  21. J Agric Food Chem. 2021 Dec 29;69(51):15495-15511 [PMID: 34919378]
  22. Radiat Res. 1993 Jun;134(3):331-6 [PMID: 8316626]
  23. J Dairy Sci. 2009 Jan;92(1):109-16 [PMID: 19109269]
  24. Int J Biometeorol. 2021 Jul;65(7):1231-1244 [PMID: 33496873]
  25. Am J Physiol. 1966 Mar;210(3):606-10 [PMID: 4286724]
  26. Int J Hyperthermia. 1997 Sep-Oct;13(5):439-57 [PMID: 9354931]
  27. Nat Commun. 2019 Jan 8;10(1):77 [PMID: 30622281]
  28. Front Plant Sci. 2017 Jan 10;7:2067 [PMID: 28119730]
  29. PLoS One. 2020 Dec 22;15(12):e0243507 [PMID: 33351808]
  30. Immunology. 2014 Feb;141(2):157-65 [PMID: 24147732]
  31. J Ovarian Res. 2011 Jun 22;4:9 [PMID: 21696631]
  32. Nature. 2015 Oct 22;526(7574):591-4 [PMID: 26458103]
  33. DNA Repair (Amst). 2013 Mar 1;12(3):227-37 [PMID: 23332971]
  34. J Athl Train. 2012 Mar-Apr;47(2):184-90 [PMID: 22488284]
  35. Med Sport Sci. 2008;53:121-129 [PMID: 19209003]
  36. J Insect Physiol. 2000 Apr;46(4):451-456 [PMID: 12770209]
  37. Biochem Biophys Res Commun. 2002 Oct 4;297(4):714-21 [PMID: 12359211]
  38. Front Genet. 2014 Aug 05;5:250 [PMID: 25177340]
  39. Oncol Lett. 2020 Feb;19(2):1175-1186 [PMID: 31966047]
  40. Anticancer Res. 2009 Apr;29(4):1319-25 [PMID: 19414382]
  41. Acta Naturae. 2016 Apr-Jun;8(2):75-8 [PMID: 27437141]
  42. J Biol Chem. 1999 Jun 18;274(25):17860-8 [PMID: 10364231]
  43. Nature. 2017 Mar 23;543(7646):573-576 [PMID: 28297716]
  44. Hypertension. 1985 Jul-Aug;7(4):519-24 [PMID: 4040123]
  45. Mil Med. 1989 May;154(5):263-4 [PMID: 2499843]
  46. Plant J. 2005 Jan;41(1):95-106 [PMID: 15610352]
  47. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  48. PLoS One. 2018 Jun 14;13(6):e0198604 [PMID: 29902206]
  49. J Endocrinol. 1964 Feb;28:301-20 [PMID: 14128057]
  50. BMC Bioinformatics. 2006 Apr 05;7:191 [PMID: 16597342]
  51. BMC Genomics. 2019 Jun 17;20(1):502 [PMID: 31208322]
  52. Mol Cell Biol. 2009 Apr;29(8):1999-2010 [PMID: 19188452]
  53. J Anim Sci Biotechnol. 2016 Jun 28;7:37 [PMID: 27354915]
  54. Mar Biotechnol (NY). 2022 Mar;24(1):5-17 [PMID: 34787764]
  55. PLoS One. 2019 Jan 9;14(1):e0209182 [PMID: 30625175]

Word Cloud

Created with Highcharts 10.0.0stressheatadrenalgenesprocessesglandslevelsHeatmoleculargrouprats°CperformedRNAliverrelatedWeightednetworkWGCNArectaltemperaturecorticosteronesignificantlyblackmoduleenrichedgreen-yellowbigchallengeanimalsurvivalhealthdueglobalwarmingHoweverdrivingresponseunclearstudyexposedcontrol=522threegroupsfive42lasting3060120minseparatelysequencingdetectedhormonesglandbloodtissuesgeneco-expressionanalysisalsoResultsshowednegativelythermogenesismetabolismstronglypositivelyassociateddopaminenorepinephrineepinephrinetranscriptionalregulatoryactivitiesFinally1713keymodulesidentifiedrespectivelysharedcommonpatternschangesMethyltransferase3polyADP-ribosepolymerase2zincfingerprotein36-like1occupiedpivotalpositionsprotein-proteininteractioninvolvednumberstress-relatedThereforeconsideredcandidateregulationfindingsshednewlightunderpinningIdentificationKeyGenesAssociatedStressRatsGeneCo-ExpressionNetworkAnalysisRNA-seqgeneticmarker

Similar Articles

Cited By (2)