Infantile Neurodegeneration Results from Mutants of 17β-Hydroxysteroid Dehydrogenase Type 10 Rather Than Aβ-Binding Alcohol Dehydrogenase.

Xue-Ying He, Carl Dobkin, William Ted Brown, Song-Yu Yang
Author Information
  1. Xue-Ying He: Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
  2. Carl Dobkin: Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
  3. William Ted Brown: Central Clinical School, University of Sydney, Sydney 2006, Australia.
  4. Song-Yu Yang: Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.

Abstract

Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10), a homo-tetrameric multifunctional protein with 1044 residues encoded by the gene, is necessary for brain cognitive function. Missense mutations result in infantile neurodegeneration, an inborn error in isoleucine metabolism. A 5-methylcytosine hotspot underlying a 388-T transition leads to the HSD10 (p.R130C) mutant to be responsible for approximately half of all cases suffering with this mitochondrial disease. Fewer females suffer with this disease due to X-inactivation. The binding capability of this dehydrogenase to Aβ-peptide may play a role in Alzheimer's disease, but it appears unrelated to infantile neurodegeneration. Research on this enzyme was complicated by reports of a purported Aβ-peptide-binding alcohol dehydrogenase (ABAD), formerly referred to as endoplasmic-reticulum-associated Aβ-binding protein (ERAB). Reports concerning both ABAD and ERAB in the literature reflect features inconsistent with the known functions of 17β-HSD10. It is clarified here that ERAB is reportedly a longer subunit of 17β-HSD10 (262 residues). 17β-HSD10 exhibits L-3-hydroxyacyl-CoA dehydrogenase activity and is thus also referred to in the literature as short-chain 3-hydorxyacyl-CoA dehydrogenase or type II 3-hydorxyacyl-CoA dehydrogenase. However, 17β-HSD10 is not involved in ketone body metabolism, as reported in the literature for ABAD. Reports in the literature referring to ABAD (i.e., 17β-HSD10) as a alcohol dehydrogenase, relying on data underlying ABAD's activities, were found to be unreproducible. Furthermore, the rediscovery of ABAD/ERAB's mitochondrial localization did not cite any published research on 17β-HSD10. Clarification of the purported ABAD/ERAB function derived from these reports on ABAD/ERAB may invigorate this research field and encourage new approaches to the understanding and treatment of -gene-related disorders. We establish here that infantile neurodegeneration is caused by mutants of 17β-HSD10 but not ABAD, and so we conclude that ABAD represents a misnomer employed in high-impact journals.

Keywords

References

  1. Am J Hum Genet. 1999 Nov;65(5):1406-12 [PMID: 10521307]
  2. Med Chem. 2017 Jan 09;: [PMID: 28067167]
  3. Mol Genet Metab. 2004 Apr;81(4):295-9 [PMID: 15059617]
  4. Endocr Metab Immune Disord Drug Targets. 2006 Mar;6(1):95-102 [PMID: 16611167]
  5. BMC Biochem. 2013 Jul 08;14:17 [PMID: 23834306]
  6. Mol Cell Endocrinol. 2011 Aug 22;343(1-2):1-6 [PMID: 21708223]
  7. EMBO J. 2015 Oct 14;34(20):2483-5 [PMID: 26467018]
  8. JIMD Rep. 2017;32:81-85 [PMID: 27306202]
  9. JIMD Rep. 2020 Aug 16;56(1):70-81 [PMID: 33204598]
  10. Biochim Biophys Acta. 2000 Apr 12;1484(2-3):267-77 [PMID: 10760475]
  11. Mol Cell Endocrinol. 2001 Jan 22;171(1-2):89-98 [PMID: 11165016]
  12. Neurobiol Aging. 2019 Sep;81:77-87 [PMID: 31252207]
  13. J Alzheimers Dis. 2011;27(2):253-7 [PMID: 21841256]
  14. Nucleic Acids Res. 2015 May 26;43(10):5112-9 [PMID: 25925575]
  15. J Inherit Metab Dis. 2002 Oct;25(6):477-82 [PMID: 12555940]
  16. J Biol Chem. 1997 Jun 20;272(25):15959-66 [PMID: 9188497]
  17. EMBO Mol Med. 2010 Feb;2(2):51-62 [PMID: 20077426]
  18. Am J Hum Genet. 2003 May;72(5):1300-7 [PMID: 12696021]
  19. Mol Genet Metab. 2008 Jan;93(1):30-5 [PMID: 17945527]
  20. Mini Rev Med Chem. 2009 Jul;9(8):1002-8 [PMID: 19601895]
  21. J Inherit Metab Dis. 2012 Jan;35(1):81-9 [PMID: 22127393]
  22. J Pharm Sci. 1974 Dec;63(12):1858-66 [PMID: 4449016]
  23. J Steroid Biochem Mol Biol. 2014 Sep;143:460-72 [PMID: 25007702]
  24. Zhonghua Er Ke Za Zhi. 2013 Oct;51(10):783-6 [PMID: 24406234]
  25. Mol Genet Metab. 2002 Mar;75(3):235-43 [PMID: 11914035]
  26. Mol Cell Endocrinol. 2019 Jun 1;489:1-2 [PMID: 30991077]
  27. Biochem J. 2003 Nov 15;376(Pt 1):49-60 [PMID: 12917011]
  28. Mol Genet Metab. 2007 Sep-Oct;92(1-2):36-42 [PMID: 17618155]
  29. Pediatr Res. 2000 Dec;48(6):852-5 [PMID: 11102558]
  30. ACS Chem Neurosci. 2022 Jul 20;13(14):2176-2190 [PMID: 35802826]
  31. Mol Cell Endocrinol. 2019 Jun 1;489:92-97 [PMID: 30321584]
  32. Gene. 2013 Feb 25;515(2):380-4 [PMID: 23266819]
  33. Eur J Hum Genet. 2011 Feb;19(2):123-4; author reply 124 [PMID: 21081971]
  34. Curr Alzheimer Res. 2013 Jan;10(1):21-9 [PMID: 22742981]
  35. J Biol Chem. 1999 May 21;274(21):15014-9 [PMID: 10329704]
  36. PLoS One. 2013 Jun 05;8(6):e65609 [PMID: 23755257]
  37. Arch Biochem Biophys. 1995 Aug 1;321(1):214-20 [PMID: 7639524]
  38. J Neuroendocrinol. 2016 Feb;28(2):12351 [PMID: 26681259]
  39. JIMD Rep. 2017;32:25-32 [PMID: 27295195]
  40. Pediatr Res. 2005 Sep;58(3):488-91 [PMID: 16148061]
  41. J Biol Chem. 1999 Jan 22;274(4):2145-56 [PMID: 9890977]
  42. Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14820-4 [PMID: 19706438]
  43. Brain Res. 2001 Jul 13;907(1-2):44-53 [PMID: 11430884]
  44. Brain Dev. 2004 Jan;26(1):12-4 [PMID: 14729408]
  45. Mol Genet Genomic Med. 2019 Dec;7(12):e1000 [PMID: 31654490]
  46. FEBS J. 2005 Oct;272(19):4874-83 [PMID: 16176262]
  47. Clin Biochem. 2009 Jan;42(1-2):27-33 [PMID: 18996107]
  48. BMC Med Genomics. 2020 May 7;13(1):66 [PMID: 32381089]
  49. Cell. 2008 Oct 31;135(3):462-74 [PMID: 18984158]
  50. Metab Brain Dis. 2017 Dec;32(6):2063-2071 [PMID: 28875337]
  51. J Inherit Metab Dis. 2005;28(4):501-15 [PMID: 15902553]
  52. Am J Hum Genet. 2007 Feb;80(2):372-7 [PMID: 17236142]
  53. BMC Genomics. 2006 Aug 09;7:202 [PMID: 16899120]
  54. Nature. 1997 Oct 16;389(6652):689-95 [PMID: 9338779]
  55. J Steroid Biochem Mol Biol. 2003 Nov;87(2-3):191-8 [PMID: 14672739]
  56. Adv Exp Med Biol. 2001;487:101-10 [PMID: 11403151]
  57. Biochim Biophys Acta Mol Basis Dis. 2017 Dec;1863(12):3294-3302 [PMID: 28888424]
  58. Mol Genet Metab. 2007 May;91(1):115 [PMID: 17317257]
  59. Eur J Biochem. 2001 Sep;268(18):4899-907 [PMID: 11559359]
  60. Mol Cell Endocrinol. 2001 Jan 22;171(1-2):1-4 [PMID: 11165003]
  61. J Mol Biol. 2004 Sep 17;342(3):943-52 [PMID: 15342248]
  62. Hum Mol Genet. 2014 Jul 1;23(13):3618-28 [PMID: 24549042]
  63. J Alzheimers Dis. 2022;88(4):1487-1497 [PMID: 35786658]
  64. Science. 2004 Apr 16;304(5669):448-52 [PMID: 15087549]
  65. Mol Biosyst. 2009 Oct;5(10):1174-9 [PMID: 19756307]
  66. J Med Chem. 2019 May 9;62(9):4252-4264 [PMID: 30444369]
  67. Cell Death Dis. 2020 Jul 23;11(7):563 [PMID: 32703935]
  68. Ann Neurol. 2002 May;51(5):656-9 [PMID: 12112118]
  69. Nature. 2016 Mar 10;531(7593):173 [PMID: 26961649]
  70. Biochemistry. 1992 Apr 21;31(15):3793-9 [PMID: 1567834]
  71. Bioorg Med Chem. 2017 Feb 1;25(3):1143-1152 [PMID: 28082069]
  72. J Biol Chem. 2000 Sep 1;275(35):27100-9 [PMID: 10869339]
  73. RNA Biol. 2016 May 3;13(5):477-85 [PMID: 26950678]
  74. J Alzheimers Dis. 2018;62(2):665-673 [PMID: 29480196]
  75. J Neurochem. 2020 Nov;155(3):231-249 [PMID: 32306391]
  76. Trends Endocrinol Metab. 2005 May-Jun;16(4):167-75 [PMID: 15860413]
  77. Biochem J. 2000 Jan 1;345 Pt 1:139-43 [PMID: 10600649]
  78. PLoS One. 2011;6(11):e27348 [PMID: 22132097]
  79. J Biol Chem. 1998 Apr 24;273(17):10741-6 [PMID: 9553139]
  80. FEBS Lett. 1999 May 28;451(3):238-42 [PMID: 10371197]
  81. Mol Cell Endocrinol. 2019 Jun 1;489:107-118 [PMID: 30508570]
  82. Brain Res. 2002 Nov 1;954(1):115-22 [PMID: 12393239]
  83. Mitochondrion. 2015 Mar;21:1-10 [PMID: 25575635]

MeSH Term

Humans
Alcohol Dehydrogenase
Alzheimer Disease
Mutation, Missense
3-Hydroxyacyl CoA Dehydrogenases

Chemicals

Alcohol Dehydrogenase
HSD17B10 protein, human
3-Hydroxyacyl CoA Dehydrogenases

Word Cloud

Created with Highcharts 10.0.017β-HSD10dehydrogenaseABADneurodegenerationliteratureinfantilediseaseERABType10proteinresiduesfunctionmetabolismunderlyingmitochondrialmayreportspurportedalcoholreferredReports3-hydorxyacyl-CoAresearchABAD/ERABdisordersDehydrogenasedisability17β-hydroxysteroidhomo-tetramericmultifunctional1044encodedgenenecessarybraincognitiveMissensemutationsresultinbornerrorisoleucine5-methylcytosinehotspot388-TtransitionleadsHSD10pR130CmutantresponsibleapproximatelyhalfcasessufferingFewerfemalessufferdueX-inactivationbindingcapabilityAβ-peptideplayroleAlzheimer'sappearsunrelatedResearchenzymecomplicatedAβ-peptide-bindingformerlyendoplasmic-reticulum-associatedAβ-bindingconcerningreflectfeaturesinconsistentknownfunctionsclarifiedreportedlylongersubunit262exhibitsL-3-hydroxyacyl-CoAactivitythusalsoshort-chaintypeIIHoweverinvolvedketonebodyreportedreferringierelyingdataABAD'sactivitiesfoundunreproducibleFurthermorerediscoveryABAD/ERAB'slocalizationcitepublishedClarificationderivedinvigoratefieldencouragenewapproachesunderstandingtreatment-gene-relatedestablishcausedmutantsconcluderepresentsmisnomeremployedhigh-impactjournalsInfantileNeurodegenerationResultsMutants17β-HydroxysteroidRatherAβ-BindingAlcoholX-linkedintellectualmentalmetabolicmitochondria

Similar Articles

Cited By