Approaches for Memristive Structures Using Scratching Probe Nanolithography: Towards Neuromorphic Applications.

Roman V Tominov, Zakhar E Vakulov, Vadim I Avilov, Ivan A Shikhovtsov, Vadim I Varganov, Victor B Kazantsev, Lovi Raj Gupta, Chander Prakash, Vladimir A Smirnov
Author Information
  1. Roman V Tominov: Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia. ORCID
  2. Zakhar E Vakulov: Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia. ORCID
  3. Vadim I Avilov: Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia.
  4. Ivan A Shikhovtsov: Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia.
  5. Vadim I Varganov: Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia.
  6. Victor B Kazantsev: Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia.
  7. Lovi Raj Gupta: Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia. ORCID
  8. Chander Prakash: Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia. ORCID
  9. Vladimir A Smirnov: Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia. ORCID

Abstract

This paper proposes two different approaches to studying resistive switching of oxide thin films using scratching probe nanolithography of atomic force microscopy (AFM). These approaches allow us to assess the effects of memristor size and top-contact thickness on resistive switching. For that purpose, we investigated scratching probe nanolithography regimes using the Taguchi method, which is known as a reliable method for improving the reliability of the result. The AFM parameters, including normal load, scratch distance, probe speed, and probe direction, are optimized on the photoresist thin film by the Taguchi method. As a result, the pinholes with diameter ranged from 25.4 ± 2.2 nm to 85.1 ± 6.3 nm, and the groove array with a depth of 40.5 ± 3.7 nm and a roughness at the bottom of less than a few nanometers was formed. Then, based on the Si/TiN/ZnO/photoresist structures, we fabricated and investigated memristors with different spot sizes and TiN top contact thickness. As a result, the HRS/LRS ratio, U, and I are well controlled for a memristor size from 27 nm to 83 nm and ranged from ~8 to ~128, from 1.4 ± 0.1 V to 1.8 ± 0.2 V, and from (1.7 ± 0.2) × 10 A to (4.2 ± 0.6) × 10 A, respectively. Furthermore, the HRS/LRS ratio and U are well controlled at a TiN top contact thickness from 8.3 ± 1.1 nm to 32.4 ± 4.2 nm and ranged from ~22 to ~188 and from 1.15 ± 0.05 V to 1.62 ± 0.06 V, respectively. The results can be used in the engineering and manufacturing of memristive structures for neuromorphic applications of brain-inspired artificial intelligence systems.

Keywords

References

  1. Sensors (Basel). 2021 Apr 10;21(8): [PMID: 33920246]
  2. IEEE Trans Neural Netw Learn Syst. 2020 Jan;31(1):148-162 [PMID: 30892250]
  3. Adv Mater. 2022 Jan;34(3):e2105022 [PMID: 34695257]
  4. Nanomicro Lett. 2021 Mar 6;13(1):85 [PMID: 34138298]
  5. Front Neurosci. 2018 Dec 03;12:891 [PMID: 30559644]
  6. Materials (Basel). 2020 Aug 05;13(16): [PMID: 32764373]
  7. Sci Rep. 2013;3:1619 [PMID: 23563810]
  8. Front Neurosci. 2021 Jun 07;15:661856 [PMID: 34163323]
  9. Adv Mater. 2018 Oct;30(42):e1704729 [PMID: 29667255]
  10. Nanomaterials (Basel). 2022 Jan 28;12(3): [PMID: 35159799]
  11. Nanomaterials (Basel). 2020 May 25;10(5): [PMID: 32466144]
  12. Micromachines (Basel). 2021 Oct 14;12(10): [PMID: 34683294]
  13. Front Neuroanat. 2021 Oct 20;15:746057 [PMID: 34744642]
  14. ACS Appl Mater Interfaces. 2018 Aug 8;10(31):26443-26450 [PMID: 30011178]
  15. Nanoscale. 2018 Nov 8;10(43):20089-20095 [PMID: 30357252]
  16. ACS Nano. 2018 Feb 27;12(2):1656-1663 [PMID: 29328623]
  17. Sensors (Basel). 2021 Aug 19;21(16): [PMID: 34451027]
  18. Neuron. 2021 Feb 17;109(4):571-575 [PMID: 33600754]
  19. Nanomaterials (Basel). 2022 May 18;12(10): [PMID: 35630952]
  20. Molecules. 2020 Dec 29;26(1): [PMID: 33383898]
  21. RSC Adv. 2022 May 11;12(22):14235-14245 [PMID: 35558855]
  22. Adv Exp Med Biol. 2010;657:167-82 [PMID: 20020347]
  23. Trends Neurosci. 2021 Oct;44(10):808-821 [PMID: 34481635]
  24. Nat Nanotechnol. 2013 Jan;8(1):13-24 [PMID: 23269430]

Grants

  1. No. 21-79-00216/Russian Science Foundation
  2. MK-2290.2022.4/grant of the President of the Russian Federation
  3. Agreement No. 075-15-2022-1123/Russian Federation Government

Word Cloud

Created with Highcharts 10.0.0±1nm20probe4methodVresistiveswitchingthinscratchingnanolithographymemristorthicknessTaguchiresultranged3differentapproachesfilmsusingAFMsizeinvestigated67structuresTiNtopcontactHRS/LRSratioUwellcontrolled8×10respectivelyneuromorphicartificialintelligencesystemspaperproposestwostudyingoxideatomicforcemicroscopyallowusassesseffectstop-contactpurposeregimesknownreliableimprovingreliabilityparametersincludingnormalloadscratchdistancespeeddirectionoptimizedphotoresistfilmpinholesdiameter2585groovearraydepth405roughnessbottomlessnanometersformedbasedSi/TiN/ZnO/photoresistfabricatedmemristorsspotsizes2783~8~128Furthermore32~22~18815056206resultscanusedengineeringmanufacturingmemristiveapplicationsbrain-inspiredApproachesMemristiveStructuresUsingScratchingProbeNanolithography:TowardsNeuromorphicApplicationsReRAMZnOpulsedlaserdeposition

Similar Articles

Cited By