Update on Biomarkers for the Stratification of Indeterminate Pulmonary Nodules.

Rafael Paez, Michael N Kammer, Nicole T Tanner, Samira Shojaee, Brent E Heideman, Tobias Peikert, Meridith L Balbach, Wade T Iams, Boting Ning, Marc E Lenburg, Christopher Mallow, Lonny Yarmus, Kwun M Fong, Stephen Deppen, Eric L Grogan, Fabien Maldonado
Author Information
  1. Rafael Paez: Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN.
  2. Michael N Kammer: Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN.
  3. Nicole T Tanner: Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC.
  4. Samira Shojaee: Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN.
  5. Brent E Heideman: Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN.
  6. Tobias Peikert: Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN.
  7. Meridith L Balbach: Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.
  8. Wade T Iams: Department of Medicine, Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN; Vanderbilt-Ingram Cancer Center, Nashville, TN.
  9. Boting Ning: Department of Medicine, Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA.
  10. Marc E Lenburg: Department of Medicine, Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA.
  11. Christopher Mallow: Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami, Miami, FL.
  12. Lonny Yarmus: Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD.
  13. Kwun M Fong: University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, QLD, Australia.
  14. Stephen Deppen: Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN; Vanderbilt-Ingram Cancer Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville, TN.
  15. Eric L Grogan: Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN; Vanderbilt-Ingram Cancer Center, Nashville, TN; Tennessee Valley Healthcare System, Nashville, TN.
  16. Fabien Maldonado: Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN. Electronic address: fabien.maldonado@vumc.org.

Abstract

Lung cancer is the leading cause of cancer-related deaths. Early detection and diagnosis are critical, as survival decreases with advanced stages. Approximately 1.6 million nodules are incidentally detected every year on chest CT scan images in the United States. This number of nodules identified is likely much larger after accounting for screening-detected nodules. Most of these nodules, whether incidentally or screening detected, are benign. Despite this, many patients undergo unnecessary invasive procedures to rule out cancer because our current stratification approaches are suboptimal, particularly for intermediate probability nodules. Thus, noninvasive strategies are urgently needed. Biomarkers have been developed to assist through the continuum of lung cancer care and include blood protein-based biomarkers, liquid biopsies, quantitative imaging analysis (radiomics), exhaled volatile organic compounds, and bronchial or nasal epithelium genomic classifiers, among others. Although many biomarkers have been developed, few have been integrated into clinical practice as they lack clinical utility studies showing improved patient-centered outcomes. Rapid technologic advances and large network collaborative efforts will continue to drive the discovery and validation of many novel biomarkers. Ultimately, however, randomized clinical utility studies showing improved patient outcomes will be required to bring biomarkers into clinical practice.

Keywords

References

  1. Chest. 2021 Jan;159(1):401-412 [PMID: 32758562]
  2. J Thorac Oncol. 2011 Oct;6(10):1632-8 [PMID: 21694641]
  3. Respir Res. 2018 Nov 26;19(1):233 [PMID: 30477498]
  4. Clin Cancer Res. 2017 Apr 15;23(8):1998-2005 [PMID: 27729459]
  5. Nat Commun. 2021 Aug 20;12(1):5060 [PMID: 34417454]
  6. Cancer Biomark. 2012;11(4):129-37 [PMID: 23144150]
  7. Lung Cancer. 2021 May;155:78-86 [PMID: 33761380]
  8. Am J Respir Cell Mol Biol. 2003 Sep;29(3 Pt 1):331-43 [PMID: 12702543]
  9. J Thorac Oncol. 2017 Mar;12(3):578-584 [PMID: 27615397]
  10. PLoS One. 2016 Apr 19;11(4):e0153046 [PMID: 27093275]
  11. Cancer Prev Res (Phila). 2017 Nov;10(11):651-659 [PMID: 28877936]
  12. Clin Chim Acta. 2022 Sep 1;534:106-114 [PMID: 35870539]
  13. Cancer Epidemiol Biomarkers Prev. 2022 Sep 2;31(9):1752-1759 [PMID: 35732292]
  14. Eur Respir J. 2021 Apr 1;57(4): [PMID: 33303552]
  15. Clin Cancer Res. 2018 Jul 1;24(13):2984-2992 [PMID: 29463557]
  16. Lung Cancer. 2013 Apr;80(1):45-9 [PMID: 23352032]
  17. Lung Cancer. 2021 Apr;154:197-205 [PMID: 33653598]
  18. Lancet Respir Med. 2020 Jul;8(7):709-716 [PMID: 32649919]
  19. BMC Pulm Med. 2016 Jan 22;16:16 [PMID: 26801409]
  20. Lung Cancer. 2021 Apr;154:206-213 [PMID: 33563485]
  21. Comput Biol Med. 2020 May;120:103706 [PMID: 32250850]
  22. Oncotarget. 2017 Dec 5;8(67):111902-111911 [PMID: 29340099]
  23. Cancer. 2020 Apr 15;126(8):1804-1809 [PMID: 31999831]
  24. Chest. 2023 Apr;163(4):966-976 [PMID: 36368616]
  25. PLoS One. 2015 Dec 23;10(12):e0142484 [PMID: 26698306]
  26. N Engl J Med. 2015 Jul 16;373(3):243-51 [PMID: 25981554]
  27. Cancer Med. 2019 Jul;8(8):3782-3792 [PMID: 31132233]
  28. BMC Cancer. 2011 Dec 09;11:513 [PMID: 22151235]
  29. Cancer Res. 2012 Nov 15;72(22):5692-701 [PMID: 22962272]
  30. Am J Respir Crit Care Med. 2013 Aug 15;188(4):461-5 [PMID: 23306547]
  31. Nat Med. 2019 Jun;25(6):954-961 [PMID: 31110349]
  32. Lung Cancer. 2019 Sep;135:123-129 [PMID: 31446984]
  33. BMC Med Genomics. 2015 May 06;8:18 [PMID: 25944280]
  34. JAMA Oncol. 2018 Oct 1;4(10):e182078 [PMID: 30003238]
  35. IEEE Trans Biomed Eng. 2015 Aug;62(8):2044-54 [PMID: 25775482]
  36. J Breath Res. 2020 Jul 24;14(4):046004 [PMID: 32325432]
  37. Chest. 2021 Mar;159(3):1283-1287 [PMID: 33171158]
  38. Chest. 2017 Aug;152(2):263-270 [PMID: 28115167]
  39. J Natl Cancer Inst. 2017 Jul 1;109(7): [PMID: 28376173]
  40. Clin Cancer Res. 2017 Nov 15;23(22):7141-7152 [PMID: 28855354]
  41. BMC Genomics. 2018 Jul 20;19(1):545 [PMID: 30029594]
  42. J Breath Res. 2019 Jun 19;13(3):036013 [PMID: 31085817]
  43. Cancer Med. 2018 Dec;7(12):6340-6356 [PMID: 30507033]
  44. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2374-6 [PMID: 5289873]
  45. Radiology. 2022 Sep;304(3):683-691 [PMID: 35608444]
  46. Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10143-8 [PMID: 15210990]
  47. J Thorac Oncol. 2018 May;13(5):676-681 [PMID: 29425703]
  48. J Thorac Oncol. 2021 Feb;16(2):228-236 [PMID: 33137463]
  49. Med Decis Making. 2013 Feb;33(2):154-62 [PMID: 23042826]
  50. Lung Cancer. 2018 Nov;125:223-229 [PMID: 30429025]
  51. Respir Res. 2017 Dec 21;18(1):213 [PMID: 29268739]
  52. Clin Lung Cancer. 2017 Jan;18(1):e27-e34 [PMID: 27530054]
  53. J Breath Res. 2021 Mar 01;15(2): [PMID: 33578407]
  54. Med Sci Monit. 2017 Nov 25;23:5620-5629 [PMID: 29176545]
  55. Am J Respir Crit Care Med. 2016 Jan 1;193(1):68-77 [PMID: 26367186]
  56. J Natl Cancer Inst. 1999 Dec 1;91(23):2032-8 [PMID: 10580029]
  57. Am J Respir Crit Care Med. 2017 Oct 1;196(7):e15-e29 [PMID: 28960111]
  58. J Breath Res. 2017 Apr 25;11(2):026004 [PMID: 28440225]
  59. J Thorac Oncol. 2017 Oct;12(10):1544-1551 [PMID: 28709937]
  60. PLoS One. 2018 May 14;13(5):e0196910 [PMID: 29758038]
  61. Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):25036-25042 [PMID: 32943537]
  62. Transl Lung Cancer Res. 2022 Jun;11(6):1009-1018 [PMID: 35832450]
  63. Molecules. 2021 Apr 29;26(9): [PMID: 33946997]
  64. Cancer Epidemiol Biomarkers Prev. 2023 Mar 6;32(3):329-336 [PMID: 36535650]
  65. Am J Respir Crit Care Med. 2019 May 15;199(10):1257-1266 [PMID: 30422669]
  66. Food Chem Toxicol. 2016 Dec;98(Pt A):66-72 [PMID: 27311798]
  67. Nat Med. 2007 Mar;13(3):361-6 [PMID: 17334370]
  68. Chest. 2023 Mar;163(3):697-706 [PMID: 36243060]
  69. PLoS One. 2010 Dec 07;5(12):e15003 [PMID: 21170350]
  70. Clin Cancer Res. 2010 Jul 1;16(13):3452-62 [PMID: 20570928]
  71. Am J Respir Crit Care Med. 2015 Nov 15;192(10):1208-14 [PMID: 26214244]
  72. Cancer. 2018 Jan 15;124(2):262-270 [PMID: 28940455]
  73. Oncotarget. 2017 Dec 26;9(5):6346-6355 [PMID: 29464077]
  74. Clin Respir J. 2018 Jun;12(6):2020-2028 [PMID: 29356386]
  75. Am J Respir Crit Care Med. 2020 Jul 15;202(2):241-249 [PMID: 32326730]
  76. Cancers (Basel). 2021 Mar 21;13(6): [PMID: 33801001]
  77. J Thorac Oncol. 2013 Jan;8(1):31-6 [PMID: 23201823]
  78. Physiol Genomics. 2010 Mar 3;41(1):1-8 [PMID: 19952278]
  79. J Breath Res. 2016 Feb 09;10(1):016007 [PMID: 26857451]
  80. Am J Respir Crit Care Med. 2021 Dec 1;204(11):1306-1316 [PMID: 34464235]
  81. Cancer Biomark. 2016 Mar 11;16(4):609-17 [PMID: 27002763]
  82. Cancer Res. 2009 Nov 15;69(22):8629-35 [PMID: 19887610]
  83. J Breath Res. 2021 Aug 03;15(4): [PMID: 34243176]

Grants

  1. R01 CA210360/NCI NIH HHS
  2. U01 CA152751/NCI NIH HHS
  3. U01 CA196405/NCI NIH HHS
  4. U01 CA152662/NCI NIH HHS
  5. R01 CA253923/NCI NIH HHS
  6. T32 HL087738/NHLBI NIH HHS

MeSH Term

Humans
Multiple Pulmonary Nodules
Lung Neoplasms
Biomarkers
Tomography, X-Ray Computed
Blood Proteins

Chemicals

Biomarkers
Blood Proteins

Word Cloud

Created with Highcharts 10.0.0nodulesbiomarkerscancerclinicalmanydetectionincidentallydetectedBiomarkersdevelopedlungpracticeutilitystudiesshowingimprovedoutcomeswillLungleadingcausecancer-relateddeathsEarlydiagnosiscriticalsurvivaldecreasesadvancedstagesApproximately16millioneveryyearchestCTscanimagesUnitedStatesnumberidentifiedlikelymuchlargeraccountingscreening-detectedwhetherscreeningbenignDespitepatientsundergounnecessaryinvasiveproceduresrulecurrentstratificationapproachessuboptimalparticularlyintermediateprobabilityThusnoninvasivestrategiesurgentlyneededassistcontinuumcareincludebloodprotein-basedliquidbiopsiesquantitativeimaginganalysisradiomicsexhaledvolatileorganiccompoundsbronchialnasalepitheliumgenomicclassifiersamongothersAlthoughintegratedlackpatient-centeredRapidtechnologicadvanceslargenetworkcollaborativeeffortscontinuedrivediscoveryvalidationnovelUltimatelyhoweverrandomizedpatientrequiredbringUpdateStratificationIndeterminatePulmonaryNodulesearlyindeterminatepulmonary

Similar Articles

Cited By