Oncogenic Transformation Drives DNA Methylation Loss and Transcriptional Activation at Transposable Element Loci.

Tomas Kanholm, Uzma Rentia, Melissa Hadley, Jennifer A Karlow, Olivia L Cox, Noor Diab, Matthew L Bendall, Tyson Dawson, James I McDonald, Wenbing Xie, Keith A Crandall, Kathleen H Burns, Stephen B Baylin, Hari Easwaran, Katherine B Chiappinelli
Author Information
  1. Tomas Kanholm: The George Washington University Cancer Center (GWCC), Washington, DC. ORCID
  2. Uzma Rentia: The George Washington University Cancer Center (GWCC), Washington, DC. ORCID
  3. Melissa Hadley: The George Washington University Cancer Center (GWCC), Washington, DC. ORCID
  4. Jennifer A Karlow: Department of Pathology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, Massachusetts. ORCID
  5. Olivia L Cox: The George Washington University Cancer Center (GWCC), Washington, DC. ORCID
  6. Noor Diab: The George Washington University Cancer Center (GWCC), Washington, DC. ORCID
  7. Matthew L Bendall: Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York. ORCID
  8. Tyson Dawson: The Institute for Biomedical Sciences at the George Washington University, Washington, DC. ORCID
  9. James I McDonald: The George Washington University Cancer Center (GWCC), Washington, DC. ORCID
  10. Wenbing Xie: Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. ORCID
  11. Keith A Crandall: Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC. ORCID
  12. Kathleen H Burns: Department of Pathology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, Massachusetts. ORCID
  13. Stephen B Baylin: Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. ORCID
  14. Hari Easwaran: Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. ORCID
  15. Katherine B Chiappinelli: The George Washington University Cancer Center (GWCC), Washington, DC. ORCID

Abstract

Transposable elements (TE) are typically silenced by DNA methylation and repressive histone modifications in differentiated healthy human tissues. However, TE expression increases in a wide range of cancers and is correlated with global hypomethylation of cancer genomes. We assessed expression and DNA methylation of TEs in fibroblast cells that were serially transduced with hTERT, SV40, and HRASR24C to immortalize and then transform them, modeling the different steps of the tumorigenesis process. RNA sequencing and whole-genome bisulfite sequencing were performed at each stage of transformation. TE expression significantly increased as cells progressed through transformation, with the largest increase in expression after the final stage of transformation, consistent with data from human tumors. The upregulated TEs were dominated by endogenous retroviruses [long terminal repeats (LTR)]. Most differentially methylated regions (DMR) in all stages were hypomethylated, with the greatest hypomethylation in the final stage of transformation. A majority of the DMRs overlapped TEs from the RepeatMasker database, indicating that TEs are preferentially demethylated. Many hypomethylated TEs displayed a concordant increase in expression. Demethylation began during immortalization and continued into transformation, while upregulation of TE transcription occurred in transformation. Numerous LTR elements upregulated in the model were also identified in The Cancer Genome Atlas datasets of breast, colon, and prostate cancer. Overall, these findings indicate that TEs, specifically endogenous retroviruses, are demethylated and transcribed during transformation.
SIGNIFICANCE: Analysis of epigenetic and transcriptional changes in a transformation model reveals that transposable element expression and methylation are dysregulated during oncogenic transformation.

References

  1. Nat Med. 2010 May;16(5):571-9, 1p following 579 [PMID: 20436485]
  2. Nat Commun. 2019 Nov 19;10(1):5228 [PMID: 31745090]
  3. Genome Res. 2017 Jan;27(1):118-132 [PMID: 27999094]
  4. Nat Genet. 2023 Apr;55(4):631-639 [PMID: 36973455]
  5. Clin Cancer Res. 2015 Jan 15;21(2):471-83 [PMID: 25370465]
  6. Nat Genet. 2013 Jul;45(7):836-41 [PMID: 23708189]
  7. FEBS J. 2022 Mar;289(5):1160-1179 [PMID: 33471418]
  8. Nat Rev Cancer. 2011 Sep 23;11(10):726-34 [PMID: 21941284]
  9. Nat Rev Cancer. 2011 Oct 13;11(11):761-74 [PMID: 21993244]
  10. Clin Chem. 2017 Apr;63(4):816-822 [PMID: 28188229]
  11. J Oral Pathol Med. 2020 Nov;49(10):1053-1060 [PMID: 32740989]
  12. J Mol Evol. 1980 Dec;16(2):111-20 [PMID: 7463489]
  13. Cell Stem Cell. 2011 Jun 3;8(6):676-87 [PMID: 21624812]
  14. Gene. 2009 Dec 15;448(2):115-23 [PMID: 19540319]
  15. Nature. 1988 May 5;333(6168):87-90 [PMID: 2834650]
  16. APMIS. 2016 Jan-Feb;124(1-2):31-43 [PMID: 26818260]
  17. Cancer Cell. 2022 Aug 8;40(8):792-797 [PMID: 35907399]
  18. Nat Methods. 2012 Nov;9(11):1046 [PMID: 23281567]
  19. Retrovirology. 2018 Aug 28;15(1):59 [PMID: 30153831]
  20. Proc Natl Acad Sci U S A. 2004 Oct 5;101 Suppl 2:14572-9 [PMID: 15310846]
  21. Mol Cells. 2009 Aug 31;28(2):99-103 [PMID: 19669627]
  22. Genome Res. 2014 Jul;24(7):1053-63 [PMID: 24823667]
  23. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10254-60 [PMID: 10468595]
  24. Int J Mol Sci. 2017 May 04;18(5): [PMID: 28471386]
  25. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  26. Genome Res. 2006 Feb;16(2):157-63 [PMID: 16365381]
  27. Cancer Res. 2021 Oct 15;81(20):5176-5189 [PMID: 34433584]
  28. Nature. 1999 Jul 29;400(6743):464-8 [PMID: 10440377]
  29. Cancer Res. 2021 Jul 1;81(13):3449-3460 [PMID: 33941616]
  30. Bioessays. 2016 Jan;38(1):109-17 [PMID: 26735931]
  31. Nat Genet. 2019 Apr;51(4):611-617 [PMID: 30926969]
  32. Oncotarget. 2014 Feb 15;5(3):587-98 [PMID: 24583822]
  33. PLoS Comput Biol. 2019 Sep 30;15(9):e1006453 [PMID: 31568525]
  34. Genome Biol. 2016 Oct 7;17(1):208 [PMID: 27717381]
  35. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14007-12 [PMID: 10570189]
  36. Viruses. 2022 Nov 12;14(11): [PMID: 36423114]
  37. J Clin Invest. 2022 Jul 15;132(14): [PMID: 35671108]
  38. Nat Genet. 2020 Mar;52(3):306-319 [PMID: 32024998]
  39. Int J Cancer. 2007 Jan 1;120(1):81-90 [PMID: 17013901]
  40. Oncogene. 2016 May 12;35(19):2542-6 [PMID: 26279299]
  41. J Invest Dermatol. 1996 Jan;106(1):125-8 [PMID: 8592062]
  42. RNA Biol. 2010 Nov-Dec;7(6):706-11 [PMID: 21045547]
  43. Genome Biol. 2012 Oct 03;13(10):R87 [PMID: 23034086]
  44. New Phytol. 2021 Feb;229(4):2238-2250 [PMID: 33091182]
  45. Cancers (Basel). 2022 Sep 13;14(18): [PMID: 36139593]
  46. Bioinformatics. 2022 Oct 14;38(20):4806-4808 [PMID: 36000853]
  47. Front Microbiol. 2018 Jan 15;8:2691 [PMID: 29379485]
  48. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  49. Nat Genet. 1998 Oct;20(2):116-7 [PMID: 9771701]
  50. Cell. 2015 Aug 27;162(5):961-73 [PMID: 26317465]
  51. Oncogene. 2001 Nov 26;20(54):7899-907 [PMID: 11753672]
  52. BMC Bioinformatics. 2004 Aug 19;5:113 [PMID: 15318951]
  53. Nat Commun. 2022 Nov 8;13(1):6659 [PMID: 36347867]
  54. Mob DNA. 2021 Jan 23;12(1):4 [PMID: 33485368]
  55. Genomics. 2012 Jan;99(1):10-7 [PMID: 22044633]
  56. Mol Pharmacol. 2004 Jan;65(1):18-27 [PMID: 14722233]
  57. Nat Genet. 2018 Apr;50(4):591-602 [PMID: 29610480]
  58. Cancer Res. 2008 Jul 15;68(14):5869-77 [PMID: 18632641]
  59. Nucleic Acids Res. 2015 Dec 2;43(21):e141 [PMID: 26184873]
  60. Cancer Cell. 2018 Feb 12;33(2):309-321.e5 [PMID: 29438699]
  61. Int J Mol Sci. 2022 Dec 19;23(24): [PMID: 36555863]
  62. Nature. 2020 Dec;588(7836):169-173 [PMID: 33087935]
  63. Bioinformatics. 2011 Jun 1;27(11):1571-2 [PMID: 21493656]
  64. Nat Rev Cancer. 2017 Jul;17(7):415-424 [PMID: 28642606]
  65. Microbiol Spectr. 2023 Mar 2;:e0443822 [PMID: 36861980]
  66. Bioinformatics. 2015 Nov 15;31(22):3593-9 [PMID: 26206304]
  67. J Biomed Sci. 2018 Mar 12;25(1):22 [PMID: 29526163]
  68. Genome Res. 2016 Jun;26(6):745-55 [PMID: 27197217]
  69. Genome Res. 2018 Aug;28(8):1147-1157 [PMID: 29970451]
  70. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  71. Science. 2012 Aug 24;337(6097):967-71 [PMID: 22745252]
  72. Cell. 2015 Aug 27;162(5):974-86 [PMID: 26317466]
  73. Am J Pathol. 2020 Oct;190(10):2155-2164 [PMID: 32679231]
  74. Nat Struct Mol Biol. 2014 Apr;21(4):423-5 [PMID: 24681886]

Grants

  1. R37 CA251270/NCI NIH HHS
  2. R01 CA229240/NCI NIH HHS
  3. R01 GM130680/NIGMS NIH HHS
  4. R21 CA227259/NCI NIH HHS
  5. U01 AG066101/NIA NIH HHS
  6. T32 CA247756/NCI NIH HHS
  7. R01 ES011858/NIEHS NIH HHS
  8. R01 CA230995/NCI NIH HHS
  9. R01 CA206488/NCI NIH HHS
  10. R00 CA204592/NCI NIH HHS
  11. R01 CA260691/NCI NIH HHS
  12. T32 GM007748/NIGMS NIH HHS

MeSH Term

Humans
DNA Methylation
DNA Transposable Elements
Transcriptional Activation
Sequence Analysis, RNA
Neoplasms

Chemicals

DNA Transposable Elements

Word Cloud

Created with Highcharts 10.0.0transformationexpressionTEsTEDNAmethylationstageTransposableelementshumanhypomethylationcancercellssequencingincreasefinalupregulatedendogenousretrovirusesLTRhypomethylateddemethylatedmodeltypicallysilencedrepressivehistonemodificationsdifferentiatedhealthytissuesHoweverincreaseswiderangecancerscorrelatedglobalgenomesassessedfibroblastseriallytransducedhTERTSV40HRASR24CimmortalizetransformmodelingdifferentstepstumorigenesisprocessRNAwhole-genomebisulfiteperformedsignificantlyincreasedprogressedlargestconsistentdatatumorsdominated[longterminalrepeats]differentiallymethylatedregionsDMRstagesgreatestmajorityDMRsoverlappedRepeatMaskerdatabaseindicatingpreferentiallyManydisplayedconcordantDemethylationbeganimmortalizationcontinuedupregulationtranscriptionoccurredNumerousalsoidentifiedCancerGenomeAtlasdatasetsbreastcolonprostateOverallfindingsindicatespecificallytranscribedSIGNIFICANCE:AnalysisepigenetictranscriptionalchangesrevealstransposableelementdysregulatedoncogenicOncogenicTransformationDrivesMethylationLossTranscriptionalActivationElementLoci

Similar Articles

Cited By (2)