NHGNN-DTA: a node-adaptive hybrid graph neural network for interpretable drug-target binding affinity prediction.

Haohuai He, Guanxing Chen, Calvin Yu-Chian Chen
Author Information
  1. Haohuai He: Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China.
  2. Guanxing Chen: Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China.
  3. Calvin Yu-Chian Chen: Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China. ORCID

Abstract

MOTIVATION: Large-scale prediction of drug-target affinity (DTA) plays an important role in drug discovery. In recent years, machine learning algorithms have made great progress in DTA prediction by utilizing sequence or structural information of both drugs and proteins. However, sequence-based algorithms ignore the structural information of molecules and proteins, while graph-based algorithms are insufficient in feature extraction and information interaction.
RESULTS: In this article, we propose NHGNN-DTA, a node-adaptive hybrid neural network for interpretable DTA prediction. It can adaptively acquire feature representations of drugs and proteins and allow information to interact at the graph level, effectively combining the advantages of both sequence-based and graph-based approaches. Experimental results have shown that NHGNN-DTA achieved new state-of-the-art performance. It achieved the mean squared error (MSE) of 0.196 on the Davis dataset (below 0.2 for the first time) and 0.124 on the KIBA dataset (3% improvement). Meanwhile, in the case of cold start scenario, NHGNN-DTA proved to be more robust and more effective with unseen inputs than baseline methods. Furthermore, the multi-head self-attention mechanism endows the model with interpretability, providing new exploratory insights for drug discovery. The case study on Omicron variants of SARS-CoV-2 illustrates the efficient utilization of drug repurposing in COVID-19.
AVAILABILITY AND IMPLEMENTATION: The source code and data are available at https://github.com/hehh77/NHGNN-DTA.

References

  1. Bioinformatics. 2018 Sep 1;34(17):i821-i829 [PMID: 30423097]
  2. Artif Intell Rev. 2022;55(3):1947-1999 [PMID: 34393317]
  3. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34929738]
  4. Science. 2021 Aug 20;373(6557):871-876 [PMID: 34282049]
  5. IEEE/ACM Trans Comput Biol Bioinform. 2022 Mar-Apr;19(2):718-728 [PMID: 34197324]
  6. Chem Sci. 2022 Jan 5;13(3):816-833 [PMID: 35173947]
  7. Nat Biotechnol. 2011 Oct 30;29(11):1046-51 [PMID: 22037378]
  8. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34849575]
  9. Nucleic Acids Res. 2017 Jan 4;45(D1):D271-D281 [PMID: 27794042]
  10. Nat Chem Biol. 2022 Oct;18(10):1033-1036 [PMID: 36131149]
  11. Chem Sci. 2018 Jun 6;9(24):5441-5451 [PMID: 30155234]
  12. Bioinformatics. 2021 May 23;37(8):1140-1147 [PMID: 33119053]
  13. Nat Rev Drug Discov. 2004 May;3(5):417-29 [PMID: 15136789]
  14. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  15. Nat Rev Drug Discov. 2018 Feb;17(2):97-113 [PMID: 29242609]
  16. Drug Discov Today. 2022 Dec;27(12):103373 [PMID: 36167282]
  17. Brief Bioinform. 2023 Mar 19;24(2): [PMID: 36764832]
  18. J Chem Inf Model. 2014 Mar 24;54(3):735-43 [PMID: 24521231]
  19. Nat Protoc. 2021 Dec;16(12):5634-5651 [PMID: 34759384]
  20. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082 [PMID: 29126136]
  21. Bioinformatics. 2019 Aug 1;35(15):2677-2679 [PMID: 30590407]
  22. Brief Bioinform. 2022 May 13;23(3): [PMID: 35511112]

MeSH Term

Humans
COVID-19
SARS-CoV-2
Neural Networks, Computer
Algorithms

Word Cloud

Created with Highcharts 10.0.0predictioninformationDTAdrugalgorithmsproteinsNHGNN-DTA0drug-targetaffinitydiscoverystructuraldrugssequence-basedgraph-basedfeaturenode-adaptivehybridneuralnetworkinterpretablegraphachievednewdatasetcaseMOTIVATION:Large-scaleplaysimportantrolerecentyearsmachinelearningmadegreatprogressutilizingsequenceHoweverignoremoleculesinsufficientextractioninteractionRESULTS:articleproposecanadaptivelyacquirerepresentationsallowinteractleveleffectivelycombiningadvantagesapproachesExperimentalresultsshownstate-of-the-artperformancemeansquarederrorMSE196Davis2firsttime124KIBA3%improvementMeanwhilecoldstartscenarioprovedrobusteffectiveunseeninputsbaselinemethodsFurthermoremulti-headself-attentionmechanismendowsmodelinterpretabilityprovidingexploratoryinsightsstudyOmicronvariantsSARS-CoV-2illustratesefficientutilizationrepurposingCOVID-19AVAILABILITYANDIMPLEMENTATION:sourcecodedataavailablehttps://githubcom/hehh77/NHGNN-DTANHGNN-DTA:binding

Similar Articles

Cited By