Microbial Pathogenesis in the Era of Spatial Omics.
Samantha Lempke, Dana May, Sarah E Ewald
Author Information
Samantha Lempke: Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
Dana May: Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
Sarah E Ewald: Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA. ORCID
中文译文
English
The biology of a cell, whether it is a unicellular organism or part of a multicellular network, is influenced by cell type, temporal changes in cell state, and the cell's environment. Spatial cues play a critical role in the regulation of microbial pathogenesis strategies. Information about where the pathogen is-in a tissue or in proximity to a host cell-regulates gene expression and the compartmentalization of gene products in the microbe and the host. Our understanding of host and pathogen identity has bloomed with the accessibility of transcriptomics and proteomics techniques. A missing piece of the puzzle has been our ability to evaluate global transcript and protein expression in the context of the subcellular niche, primary cell, or native tissue environment during infection. This barrier is now lower with the advent of new spatial omics techniques to understand how location regulates cellular functions. This review will discuss how recent advances in spatial proteomics and transcriptomics approaches can address outstanding questions in microbial pathogenesis.
Mol Biol Cell. 2016 Apr 15;27(8):1188-96
[PMID: 26912792 ]
PLoS Pathog. 2021 Oct 1;17(10):e1009412
[PMID: 34597346 ]
Nat Microbiol. 2020 Jun;5(6):848-863
[PMID: 32284562 ]
Nat Methods. 2015 Jan;12(1):51-4
[PMID: 25419960 ]
Biotechniques. 2002 Jul;33(1):176-9
[PMID: 12139243 ]
J Cell Biol. 2020 Sep 7;219(9):
[PMID: 32609799 ]
PLoS Pathog. 2015 Aug 28;11(8):e1005141
[PMID: 26317613 ]
Cell Host Microbe. 2020 Nov 11;28(5):752-766.e9
[PMID: 33053376 ]
Hepatology. 2019 May;69(5):2180-2195
[PMID: 30565271 ]
Methods Mol Biol. 2022;2428:381-399
[PMID: 35171492 ]
PLoS Pathog. 2022 Oct 28;18(10):e1010906
[PMID: 36306280 ]
Nat Protoc. 2017 Jun;12(6):1110-1135
[PMID: 28471460 ]
Science. 2016 Jul 1;353(6294):78-82
[PMID: 27365449 ]
mBio. 2021 Dec 21;12(6):e0026021
[PMID: 34749525 ]
J Proteome Res. 2016 Mar 4;15(3):766-76
[PMID: 26680540 ]
Cell Host Microbe. 2021 Jul 14;29(7):1186-1198.e8
[PMID: 34043960 ]
BMC Genomics. 2013 Jun 24;14:421
[PMID: 23800029 ]
Elife. 2019 Feb 12;8:
[PMID: 30744806 ]
Lancet. 1981 Jul 11;2(8237):70-1
[PMID: 6113443 ]
Science. 2019 Mar 29;363(6434):1463-1467
[PMID: 30923225 ]
Cell. 2015 May 21;161(5):1202-1214
[PMID: 26000488 ]
Front Cell Infect Microbiol. 2014 Sep 11;4:129
[PMID: 25309881 ]
Cell Syst. 2020 Jul 22;11(1):102-108.e3
[PMID: 32673562 ]
Nat Immunol. 2021 Jul;22(7):839-850
[PMID: 34168371 ]
Proteomes. 2020 Dec 02;8(4):
[PMID: 33276494 ]
Mol Cell. 2020 Dec 3;80(5):876-891.e6
[PMID: 33217318 ]
Mol Cell Proteomics. 2011 May;10(5):R110.003871
[PMID: 20823120 ]
Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13642-7
[PMID: 15340136 ]
Acta Biomater. 2021 Jan 15;120:293-303
[PMID: 32721577 ]
mBio. 2021 Feb 16;12(1):
[PMID: 33593973 ]
Cells. 2020 Apr 25;9(5):
[PMID: 32344865 ]
Cell Microbiol. 2017 Apr;19(4):
[PMID: 27696623 ]
Microb Cell Fact. 2015 Mar 25;14:41
[PMID: 25889252 ]
Mol Cell Proteomics. 2004 Nov;3(11):1128-34
[PMID: 15295017 ]
Cell Syst. 2016 Oct 26;3(4):361-373.e6
[PMID: 27641956 ]
Nat Methods. 2022 Nov;19(11):1393-1402
[PMID: 36216958 ]
Anal Chem. 2020 Jan 21;92(2):2005-2010
[PMID: 31869197 ]
Genome Biol. 2021 Jan 14;22(1):36
[PMID: 33446254 ]
J Cell Biol. 2018 Nov 5;217(11):4025-4048
[PMID: 30154186 ]
Biochim Biophys Acta. 1990 Mar 29;1038(1):85-9
[PMID: 2317519 ]
Mol Cell. 2014 Jul 17;55(2):332-41
[PMID: 25002142 ]
Cell. 2006 Apr 7;125(1):187-99
[PMID: 16615899 ]
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10260-5
[PMID: 19506249 ]
Cell. 2019 Jul 11;178(2):473-490.e26
[PMID: 31230715 ]
Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):12093-8
[PMID: 26362788 ]
ACS Infect Dis. 2018 Jun 8;4(6):918-925
[PMID: 29708735 ]
Nat Commun. 2019 Jan 18;10(1):331
[PMID: 30659192 ]
J Cell Sci. 2008 May 1;121(Pt 9):1559-68
[PMID: 18411248 ]
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12164-12173
[PMID: 32409604 ]
Elife. 2015 Sep 29;4:
[PMID: 26418743 ]
Mem Inst Oswaldo Cruz. 2003 Mar;98(2):151-70
[PMID: 12764429 ]
Virol J. 2015 Sep 11;12:138
[PMID: 26362536 ]
Science. 2014 Mar 21;343(6177):1360-3
[PMID: 24578530 ]
Nature. 2022 Nov;611(7937):810-817
[PMID: 36385528 ]
J Proteome Res. 2021 Sep 3;20(9):4543-4552
[PMID: 34436902 ]
Nat Protoc. 2006;1(4):1778-89
[PMID: 17487160 ]
Gastroenterology. 2016 Jan;150(1):64-78
[PMID: 26385073 ]
Mol Cell. 2022 Jun 16;82(12):2335-2349
[PMID: 35714588 ]
Genome Med. 2017 Aug 18;9(1):75
[PMID: 28821273 ]
Viruses. 2022 Mar 15;14(3):
[PMID: 35337019 ]
Nat Biotechnol. 2000 Apr;18(4):424-8
[PMID: 10748524 ]
Nat Protoc. 2008;3(3):534-45
[PMID: 18323822 ]
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):E2453-61
[PMID: 24927568 ]
Biotechniques. 2019 Apr;66(4):171-178
[PMID: 30987443 ]
Sci Rep. 2016 Dec 22;6:39223
[PMID: 28004771 ]
Nat Biotechnol. 2007 Dec;25(12):1483-7
[PMID: 18059260 ]
Front Immunol. 2020 Oct 20;11:594520
[PMID: 33193446 ]
Adv Sci (Weinh). 2022 Apr;9(12):e2105932
[PMID: 35199955 ]
Nat Rev Genet. 2019 May;20(5):257-272
[PMID: 30696980 ]
Mol Cell Proteomics. 2020 May;19(5):839-851
[PMID: 32132230 ]
J Virol. 2015 Apr;89(7):3988-4001
[PMID: 25631074 ]
iScience. 2022 Mar 16;25(4):104097
[PMID: 35372810 ]
mBio. 2015 Feb 17;6(1):e02357-14
[PMID: 25691595 ]
Nat Methods. 2018 Feb;15(2):127-133
[PMID: 29256494 ]
Malar J. 2010 Jul 09;9:195
[PMID: 20615261 ]
Methods Mol Biol. 2013;931:213-57
[PMID: 23027006 ]
Immunity. 2009 Jan 16;30(1):143-54
[PMID: 19144319 ]
Mol Cell. 2019 Aug 22;75(4):875-887.e5
[PMID: 31442426 ]
Nat Protoc. 2015 Mar;10(3):442-58
[PMID: 25675209 ]
Eukaryot Cell. 2013 Feb;12(2):356-67
[PMID: 23264645 ]
Amino Acids. 2012 Sep;43(3):1119-29
[PMID: 22821270 ]
Methods Mol Biol. 2022;2446:427-449
[PMID: 35157287 ]
Expert Rev Proteomics. 2021 Oct;18(10):845-861
[PMID: 34607525 ]
Genome Res. 2020 Dec 18;:
[PMID: 33355299 ]
Front Cell Infect Microbiol. 2020 Oct 14;10:569070
[PMID: 33163417 ]
Clin Diagn Lab Immunol. 2003 May;10(3):405-10
[PMID: 12738639 ]
Redox Rep. 2000;5(2-3):63-73
[PMID: 10939274 ]
Cell. 2020 Jan 23;180(2):373-386.e15
[PMID: 31955847 ]
Science. 1997 Nov 21;278(5342):1481,1483
[PMID: 9411767 ]
Elife. 2021 Mar 25;10:
[PMID: 33764296 ]
J Cell Sci. 1999 Jun;112 ( Pt 11):1697-708
[PMID: 10318762 ]
Methods Mol Biol. 2022;2532:145-186
[PMID: 35867249 ]
Neural Regen Res. 2015 Jun;10(6):897-8
[PMID: 26199603 ]
Nat Commun. 2021 Aug 11;12(1):4855
[PMID: 34381044 ]
Mol Biol Cell. 2015 May 15;26(10):1918-34
[PMID: 25788290 ]
Nat Biotechnol. 2018 Oct;36(9):880-887
[PMID: 30125270 ]
J Proteome Res. 2010 Dec 3;9(12):6135-47
[PMID: 20932056 ]
J Virol Methods. 2015 Sep 1;221:81-9
[PMID: 25958131 ]
Nat Commun. 2022 Sep 30;13(1):5752
[PMID: 36180478 ]
BMC Cell Biol. 2008 Jun 27;9:35
[PMID: 18588680 ]
Front Neurosci. 2021 Apr 22;15:591122
[PMID: 33967674 ]
Nat Protoc. 2006;1(2):586-603
[PMID: 17406286 ]
Nat Methods. 2011 Jan;8(1):70-3
[PMID: 21131968 ]
Nat Methods. 2019 Oct;16(10):987-990
[PMID: 31501547 ]
Clin Proteomics. 2020 Jun 17;17:24
[PMID: 32565759 ]
mSphere. 2020 Sep 2;5(5):
[PMID: 32878927 ]
Nat Cardiovasc Res. 2022 Oct;1(10):946-960
[PMID: 36970396 ]
Nat Biotechnol. 2022 Aug;40(8):1231-1240
[PMID: 35590073 ]
T32 AI007496/NIAID NIH HHS
T32 AI007046/NIAID NIH HHS
R35 GM138381/NIGMS NIH HHS
T32 AI055432/NIAID NIH HHS
R21 AI156153/NIAID NIH HHS
Host-Pathogen Interactions
Proteomics
Gene Expression Profiling
Protein Processing, Post-Translational