Self-Sorting in Diastereomeric Mixtures of Functionalized Dipeptides.

Qingwen Guan, Kate McAulay, Tian Xu, Sarah E Rogers, Charlotte Edwards-Gayle, Ralf Schweins, Honggang Cui, Annela M Seddon, Dave J Adams
Author Information
  1. Qingwen Guan: School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K. ORCID
  2. Kate McAulay: School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
  3. Tian Xu: Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States. ORCID
  4. Sarah E Rogers: ISIS Pulsed Neutron Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, U.K.
  5. Charlotte Edwards-Gayle: Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0QX, U.K.
  6. Ralf Schweins: Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, F-38042 Grenoble,CEDEX 9, France. ORCID
  7. Honggang Cui: Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States. ORCID
  8. Annela M Seddon: School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K.
  9. Dave J Adams: School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K. ORCID

Abstract

Self-sorting in functionalized dipeptide systems can be driven by the chirality of a single amino acid, both at a high pH in the micellar state and at a low pH in the gel state. The structures formed are affected to some degree by the relative concentrations of each component showing the complexity of such an approach. The structures underpinning the gel network are predefined by the micellar structures at a high pH. Here, we describe the systems prepared from two dipeptide-based gelators that differ only by the chirality of one of the amino acids. We provide firm evidence for self-sorting in the micellar and gel phases using small-angle neutron scattering and cryo-transmission electron microscopy (cryo-TEM), showing that complete self-sorting occurs across a range of relative concentrations.

References

  1. Chem Commun (Camb). 2012 Feb 21;48(16):2195-7 [PMID: 22159641]
  2. Chem Soc Rev. 2014 Dec 7;43(23):8150-77 [PMID: 25199102]
  3. Nat Commun. 2013;4:1480 [PMID: 23403581]
  4. Chem Sci. 2019 Jul 3;10(33):7801-7806 [PMID: 31588329]
  5. Chem Soc Rev. 2018 May 21;47(10):3395-3405 [PMID: 29419826]
  6. Chem Soc Rev. 2012 Sep 21;41(18):6089-102 [PMID: 22677951]
  7. Chem Commun (Camb). 2020 Apr 9;56(29):4094-4097 [PMID: 32162644]
  8. Angew Chem Int Ed Engl. 2015 Jan 12;54(3):946-50 [PMID: 25430809]
  9. Chem Commun (Camb). 2011 Aug 21;47(31):8922-4 [PMID: 21706108]
  10. Chem Rev. 2015 Dec 23;115(24):13165-307 [PMID: 26646318]
  11. J Synchrotron Radiat. 2021 Jan 1;28(Pt 1):318-321 [PMID: 33399583]
  12. Chem Rev. 2004 Mar;104(3):1201-18 [PMID: 15008620]
  13. Macromol Rapid Commun. 2023 Feb;44(4):e2200709 [PMID: 36177680]
  14. Nanoscale. 2014 May 21;6(10):5172-80 [PMID: 24700146]
  15. Biomacromolecules. 2014 Apr 14;15(4):1171-84 [PMID: 24568678]
  16. Biomaterials. 2009 May;30(13):2523-30 [PMID: 19201459]
  17. J Am Chem Soc. 2011 Mar 2;133(8):2511-7 [PMID: 21244023]
  18. J Am Chem Soc. 2018 Jul 18;140(28):8667-8670 [PMID: 29944359]
  19. Chempluschem. 2022 Mar 1;87(4):e202200026 [PMID: 35233979]
  20. Chem Commun (Camb). 2022 Mar 22;58(24):3941-3944 [PMID: 35244630]
  21. Chemistry. 2013 Jun 24;19(26):8558-72 [PMID: 23653294]
  22. Langmuir. 2009 Aug 4;25(15):8419-22 [PMID: 20050040]
  23. J Am Chem Soc. 1973 Jan 10;95(1):113-9 [PMID: 4682891]
  24. Nat Nanotechnol. 2018 Feb;13(2):165-172 [PMID: 29311611]
  25. J Am Chem Soc. 2022 Jun 1;144(21):9312-9323 [PMID: 35587998]
  26. Adv Mater. 2023 Apr;35(17):e2211277 [PMID: 36720202]
  27. Chem Commun (Camb). 2017 Aug 24;53(69):9586-9589 [PMID: 28808707]
  28. Langmuir. 2016 Jan 26;32(3):787-99 [PMID: 26717444]
  29. J Synchrotron Radiat. 2020 Sep 1;27(Pt 5):1438-1446 [PMID: 32876621]
  30. Langmuir. 2014 Feb 4;30(4):1022-8 [PMID: 24410257]
  31. Chem Rev. 1997 Dec 18;97(8):3133-3160 [PMID: 11851487]
  32. J Am Chem Soc. 2022 Jun 8;144(22):9775-9784 [PMID: 35621014]
  33. Chem Commun (Camb). 2015 Mar 28;51(25):5170-80 [PMID: 25476555]
  34. Sci Total Environ. 2020 Dec 15;748:141354 [PMID: 32818890]
  35. Chem Rev. 2015 Aug 12;115(15):7304-97 [PMID: 26189453]
  36. Langmuir. 2017 Mar 7;33(9):2387-2395 [PMID: 28191979]
  37. Acta Biomater. 2016 Jul 1;38:11-22 [PMID: 27131571]
  38. J Am Chem Soc. 2011 Sep 28;133(38):14975-7 [PMID: 21863803]

MeSH Term

Dipeptides
Microscopy, Electron, Transmission
Micelles
Cryoelectron Microscopy
Amino Acids

Chemicals

Dipeptides
Micelles
Amino Acids

Word Cloud

Created with Highcharts 10.0.0pHmicellargelstructuressystemschiralityaminohighstaterelativeconcentrationsshowingself-sortingSelf-sortingfunctionalizeddipeptidecandrivensingleacidlowformedaffecteddegreecomponentcomplexityapproachunderpinningnetworkpredefineddescribepreparedtwodipeptide-basedgelatorsdifferoneacidsprovidefirmevidencephasesusingsmall-angleneutronscatteringcryo-transmissionelectronmicroscopycryo-TEMcompleteoccursacrossrangeSelf-SortingDiastereomericMixturesFunctionalizedDipeptides

Similar Articles

Cited By (1)