Taking advantage of noise in quantum reservoir computing.

L Domingo, G Carlo, F Borondo
Author Information
  1. L Domingo: Instituto de Ciencias Matemáticas (ICMAT), Campus de Cantoblanco; Nicolás Cabrera, 13-15, 28049, Madrid, Spain.
  2. G Carlo: Departamento de Física, Comisión Nacional de Energía Atómica, CONICET, Av. del Libertador 8250, 1429, Buenos Aires, Argentina.
  3. F Borondo: Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain. f.borondo@uam.es.

Abstract

The biggest challenge that quantum computing and quantum machine learning are currently facing is the presence of noise in quantum devices. As a result, big efforts have been put into correcting or mitigating the induced errors. But, can these two fields benefit from noise? Surprisingly, we demonstrate that under some circumstances, quantum noise can be used to improve the performance of quantum reservoir computing, a prominent and recent quantum machine learning algorithm. Our results show that the amplitude damping noise can be beneficial to machine learning, while the depolarizing and phase damping noises should be prioritized for correction. This critical result sheds new light into the physical mechanisms underlying quantum devices, providing solid practical prescriptions for a successful implementation of quantum information processing in nowadays hardware.

References

  1. Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2205221119 [PMID: 35901215]
  2. Phys Rev Lett. 2022 Jul 15;129(3):030501 [PMID: 35905349]
  3. Phys Rev Lett. 2019 Dec 31;123(26):260404 [PMID: 31951463]
  4. Nature. 2019 Oct;574(7779):505-510 [PMID: 31645734]
  5. Sci Rep. 2020 Sep 7;10(1):14687 [PMID: 32895412]
  6. Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):1910-1916 [PMID: 31937664]
  7. Phys Rev Lett. 2021 Sep 3;127(10):100502 [PMID: 34533342]
  8. Nature. 2023 Feb;614(7949):676-681 [PMID: 36813892]
  9. Nature. 2017 Sep 13;549(7671):203-209 [PMID: 28905912]
  10. Neural Netw. 2021 Apr;136:141-151 [PMID: 33486293]
  11. IEEE Trans Neural Netw Learn Syst. 2021 Jul;32(7):3148-3155 [PMID: 32735539]
  12. Sci Bull (Beijing). 2019 Apr 30;64(8):511-515 [PMID: 36659740]
  13. Phys Rev E. 2022 Oct;106(4):L043301 [PMID: 36397493]
  14. Nat Commun. 2018 Oct 10;9(1):4195 [PMID: 30305624]

Grants

  1. CEX2019-000904-S/Ministerio de Ciencia y Tecnología
  2. LCF/BQ/DR20/11790028/"la Caixa" Foundation

Word Cloud

Created with Highcharts 10.0.0quantumnoisecomputingmachinelearningcandevicesresultreservoirdampingbiggestchallengecurrentlyfacingpresencebigeffortsputcorrectingmitigatinginducederrorstwofieldsbenefitnoise?SurprisinglydemonstratecircumstancesusedimproveperformanceprominentrecentalgorithmresultsshowamplitudebeneficialdepolarizingphasenoisesprioritizedcorrectioncriticalshedsnewlightphysicalmechanismsunderlyingprovidingsolidpracticalprescriptionssuccessfulimplementationinformationprocessingnowadayshardwareTakingadvantage

Similar Articles

Cited By (2)