Resting state connectivity in people living with HIV before and after stopping heavy drinking.

Joseph M Gullett, Jason DeFelice, Veronica L Richards, Eric C Porges, Ronald A Cohen, Varan Govind, Teddy Salan, Yan Wang, Zhi Zhou, Robert L Cook
Author Information
  1. Joseph M Gullett: Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.
  2. Jason DeFelice: Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.
  3. Veronica L Richards: Department of Epidemiology, University of Florida, Gainesville, FL, United States.
  4. Eric C Porges: Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.
  5. Ronald A Cohen: Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.
  6. Varan Govind: Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, United States.
  7. Teddy Salan: University of Miami, Coral Gables, United States.
  8. Yan Wang: Department of Epidemiology, University of Florida, Gainesville, FL, United States.
  9. Zhi Zhou: Department of Epidemiology, University of Florida, Gainesville, FL, United States.
  10. Robert L Cook: Department of Epidemiology, University of Florida, Gainesville, FL, United States.

Abstract

Background: Heavy alcohol use in people living with HIV (PLWH) has widespread negative effects on neural functioning. It remains unclear whether experimentally-induced reduction in alcohol use could reverse these effects. We sought to determine the effects of 30-days drinking cessation/reduction on resting state functional connectivity in people with and without HIV.
Methods: Thirty-five participants (48.6% PLWH) demonstrating heavy alcohol use attempted to stop drinking for 30 days via contingency management (CM). MRI was acquired at baseline and after thirty days, and functional connectivity across five resting-state fMRI (rsfMRI) networks was calculated with the Conn toolbox for Matlab and examined in relation to transdermal alcohol concentration (TAC) recorded by the ankle-worn secure continuous remote alcohol monitor (SCRAM) and self-reported alcohol use (timeline follow-back; TLFB). Associations between alcohol use and reduction, HIV status, functional connectivity, and change in functional connectivity across five major rsfMRI networks were determined relative to the pre- and post-CM timepoints.
Results: Baseline resting-state functional connectivity was not significantly associated with average TAC-AUC during the pre-CM period, though higher self-reported alcohol use over the preceding 30 days was significantly associated with higher baseline connectivity within the Dorsal Attention Network (DAN; p-FDR < 0.05). Baseline connectivity within the Salience network was significantly negatively related to objective drinking reduction after intervention (DAN; p-FDR < 0.05), whereas baseline connectivity within the Limbic network was positively associated with self-reported drinking reduction (p-FDR < 0.05). Change in between-networks functional connectivity after intervention was significantly positively associated with biosensor-confirmed drinking reduction such that higher reduction was associated with stronger connectivity between the limbic and fronto-parietal control networks (p-FDR < 0.05). PLWH with lower DAN connectivity at baseline demonstrated poorer alcohol reduction than those with higher DAN connectivity at baseline.
Discussion: Lower resting-state functional connectivity of the Salience network significantly predicted stronger drinking reduction across all participants, suggesting a potential biomarker for reduced susceptibility to the environmental and social cues that often make alcohol use reduction attempts unsuccessful. Increased between-networks connectivity was observed in participants with higher alcohol reduction after CM, suggesting a positive benefit to brain connectivity associated with reduced drinking. PLWH with lower baseline DAN connectivity may not benefit as greatly from CM for alcohol reduction.

Keywords

References

  1. Alcohol Clin Exp Res. 2007 Sep;31(9):1589-97 [PMID: 17624993]
  2. Curr Psychiatry Rep. 2007 Oct;9(5):388-95 [PMID: 17915078]
  3. HIV Med. 2010 Feb;11(2):143-51 [PMID: 19751364]
  4. Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10046-51 [PMID: 16788060]
  5. Addiction. 2003 Dec;98 Suppl 2:73-80 [PMID: 14984244]
  6. Neuroimage. 2015 Aug 15;117:67-79 [PMID: 25987368]
  7. J Neurovirol. 2013 Feb;19(1):10-23 [PMID: 23179680]
  8. Front Aging Neurosci. 2015 Dec 24;7:237 [PMID: 26733864]
  9. Acta Radiol. 2021 Feb;62(2):251-259 [PMID: 32423229]
  10. Addict Biol. 2017 Jan;22(1):206-217 [PMID: 26040546]
  11. Alcohol Clin Exp Res. 2006 Jan;30(1):26-33 [PMID: 16433729]
  12. Alcohol Clin Exp Res. 2018 Sep;42(9):1640-1649 [PMID: 29957870]
  13. Alcohol Clin Exp Res. 2013 Jan;37 Suppl 1:E373-80 [PMID: 22827502]
  14. Nat Rev Neurosci. 2002 Mar;3(3):201-15 [PMID: 11994752]
  15. AIDS Care. 2016;28(3):300-5 [PMID: 26444260]
  16. Drug Alcohol Depend. 2011 Nov 1;118(2-3):391-9 [PMID: 21665385]
  17. Exp Clin Psychopharmacol. 2023 Jan 16;: [PMID: 36649152]
  18. J Subst Abuse Treat. 2014 Feb;46(2):214-8 [PMID: 23953169]
  19. Prog Brain Res. 2016;224:155-73 [PMID: 26822358]
  20. Neuroimage. 2014 Nov 15;102 Pt 2:345-57 [PMID: 25109530]
  21. Alcohol Res Health. 2010;33(3):247-57 [PMID: 23584066]
  22. Front Psychiatry. 2021 Mar 22;12:642813 [PMID: 33828497]
  23. Neuroimage. 2007 Aug 1;37(1):90-101 [PMID: 17560126]
  24. Alcohol Clin Exp Res. 2004 Feb;28(2):313-21 [PMID: 15112939]
  25. Alcohol Clin Exp Res. 2013 Jan;37(1):16-22 [PMID: 22823467]
  26. Neurology. 2013 Mar 26;80(13):1186-93 [PMID: 23446675]
  27. J Acquir Immune Defic Syndr. 2012 Oct 1;61(2):171-8 [PMID: 22820808]
  28. Ann N Y Acad Sci. 2014 May;1316:53-70 [PMID: 24690001]
  29. Addiction. 2006 Nov;101(11):1546-60 [PMID: 17034434]
  30. Clin Infect Dis. 2013 Apr;56(8):1174-82 [PMID: 23315317]
  31. J Affect Disord. 2016 Dec;206:280-286 [PMID: 27639862]
  32. Addiction. 2006 Feb;101(2):192-203 [PMID: 16445548]
  33. Geroscience. 2023 Feb;45(1):293-309 [PMID: 35948860]
  34. Front Aging Neurosci. 2020 Jun 12;12:177 [PMID: 32595490]
  35. Scand J Psychol. 2011 Feb;52(1):1-7 [PMID: 21054421]
  36. J Neurosci. 2012 Jun 27;32(26):8890-9 [PMID: 22745490]
  37. AIDS Behav. 2017 Jul;21(7):1825-1835 [PMID: 27392417]
  38. Alcohol Clin Exp Res. 2009 Apr;33(4):740-50 [PMID: 19170662]
  39. Alcohol Clin Exp Res. 2013 May;37(5):794-803 [PMID: 23421812]
  40. Cereb Cortex. 2013 Sep;23(9):2086-99 [PMID: 22819968]
  41. Drug Alcohol Rev. 2007 Jan;26(1):25-31 [PMID: 17364833]
  42. Neurobiol Aging. 2019 Jan;73:50-60 [PMID: 30317033]
  43. Alcohol Res Health. 1999;23(2):122-7 [PMID: 10890806]
  44. AIDS. 2014 Mar 27;28(6):803-11 [PMID: 24300546]
  45. Front Psychiatry. 2017 Sep 25;8:182 [PMID: 28993741]
  46. Exp Clin Psychopharmacol. 2012 Oct;20(5):373-81 [PMID: 22708608]
  47. Brain Connect. 2012;2(3):125-41 [PMID: 22642651]
  48. Biol Psychol. 2005 Jul;69(3):353-73 [PMID: 15925035]
  49. Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1598-E1607 [PMID: 29382744]
  50. Alcohol Alcohol. 2010 Mar-Apr;45(2):136-42 [PMID: 20130150]
  51. Annu Rev Neurosci. 2015 Jul 8;38:433-47 [PMID: 25938726]
  52. Exp Clin Psychopharmacol. 2014 Feb;22(1):86-96 [PMID: 24490713]
  53. Dialogues Clin Neurosci. 2018 Jun;20(2):133-140 [PMID: 30250390]
  54. Behav Sci (Basel). 2022 Apr 28;12(5): [PMID: 35621425]
  55. Curr HIV Res. 2020;18(3):181-193 [PMID: 32065091]
  56. Alcohol Clin Exp Res. 2021 Sep;45(9):1804-1811 [PMID: 34342009]
  57. Cereb Cortex. 2017 Mar 1;27(3):2303-2317 [PMID: 27073220]
  58. Pharmacol Ther. 2011 Feb;129(2):149-71 [PMID: 20951730]
  59. Alcohol Clin Exp Res. 2013 Jul;37(7):1179-87 [PMID: 23448171]
  60. Philos Trans R Soc Lond B Biol Sci. 2018 Sep 26;373(1756): [PMID: 30104429]
  61. Addict Disord Their Treat. 2015 Sep;14(3):124-130 [PMID: 26500459]
  62. PLoS One. 2010 Nov 01;5(11):e13788 [PMID: 21072180]
  63. J Subst Abuse Treat. 2011 Oct;41(3):233-42 [PMID: 21700412]
  64. Subst Abuse Treat Prev Policy. 2019 Nov 14;14(1):52 [PMID: 31727086]
  65. Neuroimage. 2012 Oct 1;62(4):2281-95 [PMID: 22326834]
  66. Alcohol Clin Exp Res. 2007 Dec;31(12):2036-45 [PMID: 18034696]
  67. Alcohol Clin Exp Res. 2010 Jun;34(6):955-67 [PMID: 20374219]
  68. Alcohol Clin Exp Res. 2022 Jan;46(1):100-113 [PMID: 35066894]
  69. J Int Neuropsychol Soc. 2005 Jan;11(1):70-83 [PMID: 15686610]
  70. Alcohol. 2019 Dec;81:83-92 [PMID: 30179709]
  71. J Neurosci. 2019 Dec 11;39(50):9878-9882 [PMID: 31676604]
  72. Cereb Cortex. 2011 Oct;21(10):2272-81 [PMID: 21368086]
  73. Alcohol Res. 2014;36(1):39-45 [PMID: 26258999]
  74. Alcohol Clin Exp Res. 2014 Oct;38(10):2517-22 [PMID: 25335857]
  75. Drug Alcohol Depend. 2014 Sep 1;142:301-6 [PMID: 25064019]
  76. Ann N Y Acad Sci. 1995 Dec 15;769:1-13 [PMID: 8595019]
  77. Ann Hepatol. 2011 Oct-Dec;10(4):502-7 [PMID: 21911892]
  78. Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4997-5006 [PMID: 25368199]
  79. J Neuropsychiatry Clin Neurosci. 2007 Summer;19(3):274-82 [PMID: 17827412]
  80. J Neurophysiol. 2011 Sep;106(3):1125-65 [PMID: 21653723]

Grants

  1. P01 AA029543/NIAAA NIH HHS
  2. T32 AA025877/NIAAA NIH HHS
  3. U01 AA020797/NIAAA NIH HHS

Word Cloud

Created with Highcharts 10.0.0connectivityalcoholreductionusedrinkingfunctionalbaselineassociatedsignificantlyhigherDANHIVPLWHresting-statep-FDR < 005peopleeffectsparticipantsdaysCMacrossnetworksself-reportedwithinnetworklivingstateheavy30contingencymanagementfiversfMRIBaselineSalienceinterventionpositivelybetween-networksstrongerlowersuggestingreducedbenefitBackground:Heavywidespreadnegativeneuralfunctioningremainsunclearwhetherexperimentally-inducedreversesoughtdetermine30-dayscessation/reductionrestingwithoutMethods:Thirty-five486%demonstratingattemptedstopviaMRIacquiredthirtyfMRIcalculatedConntoolboxMatlabexaminedrelationtransdermalconcentrationTACrecordedankle-wornsecurecontinuousremotemonitorSCRAMtimelinefollow-backTLFBAssociationsstatuschangemajordeterminedrelativepre-post-CMtimepointsResults:averageTAC-AUCpre-CMperiodthoughprecedingDorsalAttentionNetworknegativelyrelatedobjectivewhereasLimbicChangebiosensor-confirmedlimbicfronto-parietalcontroldemonstratedpoorerDiscussion:LowerpredictedpotentialbiomarkersusceptibilityenvironmentalsocialcuesoftenmakeattemptsunsuccessfulIncreasedobservedpositivebrainmaygreatlyRestingstoppingcessationhumanimmunodeficiencyvirusmagneticresonanceimaging

Similar Articles

Cited By