SARS-CoV-2 within-host diversity of human hosts and its implications for viral immune evasion.

Binbin Xi, Xi Zeng, Zixi Chen, Jiong Zeng, Lizhen Huang, Hongli Du
Author Information
  1. Binbin Xi: School of Biology and Biological Engineering, South China University of Technology , Guangzhou, China. ORCID
  2. Xi Zeng: School of Biology and Biological Engineering, South China University of Technology , Guangzhou, China.
  3. Zixi Chen: School of Biology and Biological Engineering, South China University of Technology , Guangzhou, China.
  4. Jiong Zeng: School of Biology and Biological Engineering, South China University of Technology , Guangzhou, China.
  5. Lizhen Huang: School of Biology and Biological Engineering, South China University of Technology , Guangzhou, China.
  6. Hongli Du: School of Biology and Biological Engineering, South China University of Technology , Guangzhou, China.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously evolving, bringing great challenges to the control of the virus. In the present study, we investigated the characteristics of SARS-CoV-2 within-host diversity of human hosts and its implications for immune evasion using about 2,00,000 high-depth next-generation genome sequencing data of SARS-CoV-2. A total of 44% of the samples showed within-host variations (iSNVs), and the average number of iSNVs in the samples with iSNV was 1.90. C-to-U is the dominant substitution pattern for iSNVs. C-to-U/G-to-A and A-to-G/U-to-C preferentially occur in 5'-CG-3' and 5'-AU-3' motifs, respectively. In addition, we found that SARS-CoV-2 within-host variations are under negative selection. About 15.6% iSNVs had an impact on the content of the CpG dinucleotide (CpG) in SARS-CoV-2 genomes. We detected signatures of faster loss of CpG-gaining iSNVs, possibly resulting from zinc-finger antiviral protein-mediated antiviral activities targeting CpG, which could be the major reason for CpG depletion in SARS-CoV-2 consensus genomes. The non-synonymous iSNVs in the gene can largely alter the S protein's antigenic features, and many of these iSNVs are distributed in the amino-terminal domain (NTD) and receptor-binding domain (RBD). These results suggest that SARS-CoV-2 interacts actively with human hosts and attempts to take different evolutionary strategies to escape human innate and adaptive immunity. These new findings further deepen and widen our understanding of the within-host evolutionary features of SARS-CoV-2. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of the coronavirus disease 2019, has evolved rapidly since it was discovered. Recent studies have pointed out that some mutations in the SARS-CoV-2 S protein could confer SARS-CoV-2 the ability to evade the human adaptive immune system. In addition, it is observed that the content of the CpG dinucleotide in SARS-CoV-2 genome sequences has decreased over time, reflecting the adaptation to the human host. The significance of our research is revealing the characteristics of SARS-CoV-2 within-host diversity of human hosts, identifying the causes of CpG depletion in SARS-CoV-2 consensus genomes, and exploring the potential impacts of non-synonymous within-host variations in the gene on immune escape, which could further deepen and widen our understanding of the evolutionary features of SARS-CoV-2.

Keywords

References

  1. Nucleic Acids Res. 2022 Feb 22;50(3):1551-1561 [PMID: 35048970]
  2. Nucleic Acids Res. 2010 Sep;38(16):e164 [PMID: 20601685]
  3. Comput Struct Biotechnol J. 2021;19:5029-5038 [PMID: 34512928]
  4. Nat Microbiol. 2020 Apr;5(4):536-544 [PMID: 32123347]
  5. Nat Rev Genet. 2022 Aug;23(8):505-518 [PMID: 35256818]
  6. Science. 2021 Apr 16;372(6539): [PMID: 33688063]
  7. Genome Biol. 2019 Jan 8;20(1):8 [PMID: 30621750]
  8. Cell Rep. 2020 Jan 7;30(1):46-52.e4 [PMID: 31914396]
  9. Int J Infect Dis. 2020 Nov;100:164-173 [PMID: 32866640]
  10. Nat Rev Immunol. 2023 Mar;23(3):189-199 [PMID: 36168054]
  11. Viruses. 2021 Mar 02;13(3): [PMID: 33801257]
  12. Science. 2021 Jan 15;371(6526):284-288 [PMID: 33446556]
  13. Cell. 2021 Apr 29;184(9):2372-2383.e9 [PMID: 33743213]
  14. N Engl J Med. 2020 Mar 26;382(13):1199-1207 [PMID: 31995857]
  15. PLoS Pathog. 2021 Apr 7;17(4):e1009499 [PMID: 33826681]
  16. Cell. 2021 Jan 7;184(1):64-75.e11 [PMID: 33275900]
  17. PLoS Pathog. 2021 Aug 23;17(8):e1009849 [PMID: 34424945]
  18. Nat Rev Microbiol. 2021 Jul;19(7):409-424 [PMID: 34075212]
  19. Mol Cell. 2021 Jul 1;81(13):2851-2867.e7 [PMID: 34118193]
  20. Cell. 2021 Apr 29;184(9):2362-2371.e9 [PMID: 33735608]
  21. J Med Virol. 2022 May;94(5):1825-1832 [PMID: 35023191]
  22. mBio. 2020 Oct 16;11(5): [PMID: 33067384]
  23. Nature. 2017 Oct 5;550(7674):124-127 [PMID: 28953888]
  24. Viruses. 2022 Feb 23;14(3): [PMID: 35336862]
  25. Mol Biol Evol. 2020 Sep 1;37(9):2699-2705 [PMID: 32289821]
  26. Cell. 2020 Aug 20;182(4):812-827.e19 [PMID: 32697968]
  27. Genome Biol Evol. 2021 May 7;13(5): [PMID: 33895815]
  28. J Virol. 2007 Nov;81(22):12135-44 [PMID: 17804504]
  29. Nat Rev Genet. 2018 Aug;19(8):473-490 [PMID: 29692414]
  30. Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24303-24309 [PMID: 31719195]
  31. Mol Biol Evol. 2022 Mar 2;39(3): [PMID: 35134218]
  32. Biochem Biophys Res Commun. 2021 Jan 29;538:35-39 [PMID: 33234239]
  33. Mol Biol Evol. 1986 Sep;3(5):418-26 [PMID: 3444411]
  34. Virus Evol. 2020 Aug 19;6(2):veaa061 [PMID: 33235813]
  35. Cell. 2021 Apr 29;184(9):2348-2361.e6 [PMID: 33730597]
  36. J Med Virol. 2022 Nov;94(11):5096-5102 [PMID: 35815524]
  37. Elife. 2021 Aug 13;10: [PMID: 34387545]
  38. BMC Bioinformatics. 2003 Sep 20;4:43 [PMID: 14499005]
  39. Comput Struct Biotechnol J. 2021;19:1976-1985 [PMID: 33841748]
  40. Science. 2020 Dec 18;370(6523):1464-1468 [PMID: 33184236]
  41. PLoS Pathog. 2008 Jun 06;4(6):e1000079 [PMID: 18535658]
  42. Sci Adv. 2020 Jun 17;6(25):eabb5813 [PMID: 32596474]

MeSH Term

Humans
SARS-CoV-2
COVID-19
Immune Evasion
Antiviral Agents

Chemicals

spike protein, SARS-CoV-2
Antiviral Agents

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2within-hostiSNVshumanCpGimmunediversityhostscoronavirus2evasionvariationsgenomesfeaturesevolutionarySevereacuterespiratorysyndromecharacteristicsimplicationsgenomesamplesadditioncontentdinucleotideantiviraldepletionconsensusnon-synonymousgeneSdomainescapeadaptivedeepenwidenunderstandingcontinuouslyevolvingbringinggreatchallengescontrolviruspresentstudyinvestigatedusing00000high-depthnext-generationsequencingdatatotal44%showedaveragenumberiSNV190C-to-UdominantsubstitutionpatternC-to-U/G-to-AA-to-G/U-to-Cpreferentiallyoccur5'-CG-3'5'-AU-3'motifsrespectivelyfoundnegativeselection156%impactdetectedsignaturesfasterlossCpG-gainingpossiblyresultingzinc-fingerprotein-mediatedactivitiestargetingmajorreasoncanlargelyalterprotein'santigenicmanydistributedamino-terminalNTDreceptor-bindingRBDresultssuggestinteractsactivelyattemptstakedifferentstrategiesinnateimmunitynewfindingsIMPORTANCEcausativepathogendisease2019evolvedrapidlysincediscoveredRecentstudiespointedmutationsproteinconferabilityevadesystemobservedsequencesdecreasedtimereflectingadaptationhostsignificanceresearchrevealingidentifyingcausesexploringpotentialimpactsviralRNAeditingZAP

Similar Articles

Cited By