General anaesthesia-related complications of gut motility with a focus on cholinergic mechanisms, TRP channels and visceral pain.

Alexander V Zholos, Dariia O Dryn, Mariia I Melnyk
Author Information
  1. Alexander V Zholos: ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
  2. Dariia O Dryn: O.O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
  3. Mariia I Melnyk: ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.

Abstract

General anesthesia produces multiple side effects. Notably, it temporarily impairs gastrointestinal motility following surgery and causes the so-called postoperative ileus (POI), a multifactorial and complex condition that develops secondary to neuromuscular failure and mainly affects the small intestine. There are currently limited medication options for POI, reflecting a lack of comprehensive understanding of the mechanisms involved in this complex condition. Notably, although acetylcholine is one of the major neurotransmitters initiating excitation-contraction coupling in the gut, cholinergic stimulation by prokinetic drugs is not very efficient in case of POI. Acetylcholine when released from excitatory motoneurones of the enteric nervous system binds to and activates M2 and M3 types of muscarinic receptors in smooth muscle myocytes. Downstream of these G protein-coupled receptors, muscarinic cation TRPC4 channels act as the major focal point of receptor-mediated signal integration, causing membrane depolarisation accompanied by action potential discharge and calcium influx via L-type Ca channels for myocyte contraction. We have recently found that both inhalation (isoflurane) and intravenous (ketamine) anesthetics significantly inhibit this muscarinic cation current (termed ) in ileal myocytes, even when G proteins are activated directly by intracellular GTPγS, i.e., bypassing muscarinic receptors. Here we aim to summarize Transient Receptor Potential channels and calcium signalling-related aspects of the cholinergic mechanisms in the gut and visceral pain, discuss exactly how these may be negatively impacted by general anaesthetics, while proposing the receptor-operated TRPC4 channel as a novel molecular target for the treatment of POI.

Keywords

References

  1. Br J Pharmacol. 1982 Feb;75(2):261-7 [PMID: 6313107]
  2. Nat Rev Gastroenterol Hepatol. 2013 May;10(5):286-96 [PMID: 23438947]
  3. Acta Pharmacol Sin. 2006 Jul;27(7):833-42 [PMID: 16787566]
  4. Am J Physiol Gastrointest Liver Physiol. 2008 May;294(5):G1288-98 [PMID: 18325985]
  5. Gastroenterology. 2009 Oct;137(4):1415-24 [PMID: 19549525]
  6. Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):E3225-34 [PMID: 23929777]
  7. Protein Cell. 2019 Sep;10(9):688-693 [PMID: 31028590]
  8. Vascul Pharmacol. 2009 Aug-Sep;51(2-3):182-9 [PMID: 19540932]
  9. Front Pharmacol. 2019 Oct 04;10:1150 [PMID: 31636563]
  10. Curr Pharm Biotechnol. 2011 Jan 1;12(1):24-34 [PMID: 20932260]
  11. J Visc Surg. 2016 Dec;153(6):439-446 [PMID: 27666979]
  12. Anesthesiol Res Pract. 2012;2012:356982 [PMID: 23097665]
  13. Anesth Analg. 2007 Jun;104(6):1434-9, table of contents [PMID: 17513637]
  14. J Neurosci. 2013 Feb 13;33(7):2837-48 [PMID: 23407943]
  15. Br J Pharmacol. 2018 Jun;175(12):2185-2203 [PMID: 28924972]
  16. Nature. 2007 Jul 12;448(7150):204-8 [PMID: 17538622]
  17. Anesthesiol Res Pract. 2013;2013:297141 [PMID: 24174934]
  18. ACS Med Chem Lett. 2022 Aug 22;13(9):1472-1476 [PMID: 36105325]
  19. Eur J Pharmacol. 2018 Feb 5;820:39-44 [PMID: 29198958]
  20. Ann Palliat Med. 2021 Dec;10(12):12507-12518 [PMID: 35016456]
  21. PLoS One. 2018 Jan 31;13(1):e0191225 [PMID: 29385160]
  22. Lancet. 2022 Apr 16;399(10334):1450-1452 [PMID: 35367006]
  23. Am J Physiol Cell Physiol. 2020 Mar 1;318(3):C514-C523 [PMID: 31875697]
  24. J Physiol. 2007 Jul 1;582(Pt 1):41-61 [PMID: 17463038]
  25. PLoS One. 2015 Aug 28;10(8):e0136255 [PMID: 26317356]
  26. Biomed Res Int. 2016;2016:6978923 [PMID: 27366753]
  27. Br J Pharmacol. 2008 Apr;153(7):1505-12 [PMID: 18204473]
  28. Pflugers Arch. 2005 Oct;451(1):176-80 [PMID: 15952033]
  29. Neurosci Bull. 2018 Feb;34(1):120-142 [PMID: 29282613]
  30. Am J Physiol Gastrointest Liver Physiol. 2012 Jul 15;303(2):G141-54 [PMID: 22595988]
  31. Physiol Rev. 1979 Jul;59(3):606-718 [PMID: 37533]
  32. Lancet Psychiatry. 2022 May;9(5):346-347 [PMID: 35305300]
  33. Int J Neuropsychopharmacol. 2012 Jul;15(6):825-40 [PMID: 21798109]
  34. Br J Pharmacol. 2006 Jan;147 Suppl 1:S72-81 [PMID: 16402123]
  35. Br J Pharmacol. 2011 Jan;162(1):18-37 [PMID: 20804496]
  36. J Med Invest. 2014;61(3-4):278-84 [PMID: 25264045]
  37. Gastroenterology. 2008 Jun;134(7):2059-69 [PMID: 18343379]
  38. Br J Pharmacol. 2018 May;175(10):1691-1706 [PMID: 29485712]
  39. Nat Rev Gastroenterol Hepatol. 2020 Jun;17(6):338-351 [PMID: 32152479]
  40. Annu Rev Cell Dev Biol. 2013;29:355-84 [PMID: 24099085]
  41. Neuropharmacology. 2012 Jan;62(1):35-41 [PMID: 21907221]
  42. Am J Physiol Heart Circ Physiol. 2016 Dec 1;311(6):H1416-H1430 [PMID: 27765744]
  43. J Physiol. 1972 Feb;220(3):647-71 [PMID: 5016040]
  44. Front Physiol. 2022 Aug 19;13:904203 [PMID: 36060694]
  45. Eur J Pharmacol. 1983 Dec 23;96(3-4):295-301 [PMID: 6144556]
  46. Nat Rev Neurosci. 2008 May;9(5):370-86 [PMID: 18425091]
  47. Eur J Pain. 2012 Nov;16(10):1444-54 [PMID: 22504901]
  48. Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8784-9 [PMID: 18574153]
  49. Pharmacol Rev. 2010 Sep;62(3):381-404 [PMID: 20716668]
  50. J Cardiovasc Pharmacol. 2015 Sep;66(3):276-84 [PMID: 25970840]
  51. Neurogastroenterol Motil. 2021 May;33(5):e14046 [PMID: 33252179]
  52. J Physiol Pharmacol. 2009 Mar;60(1):3-21 [PMID: 19439804]
  53. Pharmaceuticals (Basel). 2017 Mar 30;10(2): [PMID: 28358322]
  54. J Neurosci. 2004 May 5;24(18):4444-52 [PMID: 15128858]
  55. Br J Pharmacol. 1997 Nov;122(5):885-93 [PMID: 9384504]
  56. Neuroscientist. 2016 Apr;22(2):171-87 [PMID: 25608689]
  57. Br J Pharmacol. 2004 Jan;141(1):23-36 [PMID: 14662735]
  58. Am J Gastroenterol. 2020 Feb;115(2):190-201 [PMID: 31913194]
  59. Prog Biophys Mol Biol. 2010 Sep;103(1):2-17 [PMID: 19835908]
  60. Asian J Psychiatr. 2022 Jun;72:103109 [PMID: 35427933]
  61. Drugs Context. 2019 Apr 08;8:212305 [PMID: 31007698]
  62. J Neurochem. 2011 Jun;117(6):1009-19 [PMID: 21480901]
  63. Neuron. 2007 May 3;54(3):379-86 [PMID: 17481392]
  64. Annu Rev Pharmacol Toxicol. 2021 Jan 6;61:401-420 [PMID: 32679007]
  65. J Cell Sci. 2013 Oct 1;126(Pt 19):4479-89 [PMID: 23943870]
  66. Ann Med Surg (Lond). 2022 Jul;79:104033 [PMID: 35765517]
  67. Br J Pharmacol. 2016 Nov;173(21):3110-3120 [PMID: 27459129]
  68. Annu Rev Physiol. 1999;61:85-115 [PMID: 10099683]
  69. Annu Rev Biochem. 2007;76:387-417 [PMID: 17579562]
  70. Sci Rep. 2016 Jul 08;6:29053 [PMID: 27388701]
  71. Brain Res Bull. 2002 Jan 15;57(2):133-50 [PMID: 11849819]
  72. Br J Pharmacol. 1996 Apr;117(7):1507-15 [PMID: 8730747]
  73. Mol Psychiatry. 2018 Apr;23(4):801-811 [PMID: 29532791]
  74. Front Pharmacol. 2020 Dec 18;11:594882 [PMID: 33390980]
  75. Curr Pharm Des. 2004;10(28):3561-8 [PMID: 15579053]
  76. J Cell Mol Med. 2022 Oct;26(19):4911-4923 [PMID: 35560982]

Word Cloud

Created with Highcharts 10.0.0channelsPOImuscarinicmechanismsgutcholinergicreceptorsGcalciumvisceralGeneralNotablymotilitycomplexconditionmajorsmoothmyocytescationTRPC4proteinsintracellularpainTRPanesthesiaproducesmultiplesideeffectstemporarilyimpairsgastrointestinalfollowingsurgerycausesso-calledpostoperativeileusmultifactorialdevelopssecondaryneuromuscularfailuremainlyaffectssmallintestinecurrentlylimitedmedicationoptionsreflectinglackcomprehensiveunderstandinginvolvedalthoughacetylcholineoneneurotransmittersinitiatingexcitation-contractioncouplingstimulationprokineticdrugsefficientcaseAcetylcholinereleasedexcitatorymotoneuronesentericnervoussystembindsactivatesM2M3typesmuscleDownstreamprotein-coupledactfocalpointreceptor-mediatedsignalintegrationcausingmembranedepolarisationaccompaniedactionpotentialdischargeinfluxviaL-typeCamyocytecontractionrecentlyfoundinhalationisofluraneintravenousketamineanestheticssignificantlyinhibitcurrenttermedilealevenactivateddirectlyGTPγSiebypassingaimsummarizeTransientReceptorPotentialsignalling-relatedaspectsdiscussexactlymaynegativelyimpactedgeneralanaestheticsproposingreceptor-operatedchannelnovelmoleculartargettreatmentanaesthesia-relatedcomplicationsfocusDRGneuronsneurotransmissionpatch-clampmusclespain/visceralnociception/visceralhypersensitivity

Similar Articles

Cited By