In-depth analysis of erythrose reductase homologs in Yarrowia lipolytica.

Mateusz Szczepańczyk, Dorota A Rzechonek, Cécile Neuvéglise, Aleksandra M Mirończuk
Author Information
  1. Mateusz Szczepańczyk: Laboratory for Biosustainability, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, 5B Kozuchowska St., 51-631, Wroclaw, Poland.
  2. Dorota A Rzechonek: Laboratory for Biosustainability, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, 5B Kozuchowska St., 51-631, Wroclaw, Poland.
  3. Cécile Neuvéglise: INRAE, Institut Agro, SPO, University Montpellier, 34060, Montpellier, France.
  4. Aleksandra M Mirończuk: Laboratory for Biosustainability, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, 5B Kozuchowska St., 51-631, Wroclaw, Poland. aleksandra.mironczuk@upwr.edu.pl.

Abstract

The unconventional yeast Yarrowia lipolytica produces erythritol as an osmoprotectant to adapt to osmotic stress. In this study, the array of putative erythrose reductases, responsible for the conversion of d-erythrose to erythritol, was analyzed. Single knockout and multiple knockout strains were tested for their ability to produce polyols in osmotic stress conditions. Lack of six of the reductase genes does not affect erythritol significantly, as the production of this polyol is comparable to the control strain. Deletion of eight of the homologous erythrose reductase genes resulted in a 91% decrease in erythritol synthesis, a 53% increase in mannitol synthesis, and an almost 8-fold increase in arabitol synthesis as compared to the control strain. Additionally, the utilization of glycerol was impaired in the media with induced higher osmotic pressure. The results of this research may shed new light on the production of arabitol and mannitol from glycerol by Y. lipolytica and help to develop strategies for further modification in polyol pathways in these microorganisms.

References

  1. Biotechnol Biofuels. 2016 Aug 30;9(1):180 [PMID: 27594914]
  2. Bioinformatics. 2012 Feb 15;28(4):464-9 [PMID: 22199388]
  3. Curr Microbiol. 2003 Jun;46(6):398-402 [PMID: 12732944]
  4. Genes (Basel). 2020 Nov 27;11(12): [PMID: 33261148]
  5. Bioresour Technol. 2019 Jan;271:340-344 [PMID: 30292133]
  6. Front Microbiol. 2018 May 30;9:1122 [PMID: 29910781]
  7. Bioresour Technol. 2022 Sep;360:127538 [PMID: 35777639]
  8. Yeast. 2022 May;39(5):323-336 [PMID: 35348234]
  9. Int J Syst Evol Microbiol. 2008 Feb;58(Pt 2):515-9 [PMID: 18218960]
  10. Bioresour Technol. 2014 Jan;151:120-7 [PMID: 24215768]
  11. Sci Rep. 2019 Sep 16;9(1):13365 [PMID: 31527614]
  12. Fish Shellfish Immunol. 2017 Nov;70:48-56 [PMID: 28863888]
  13. Bioresour Technol. 2002 Mar;82(1):43-9 [PMID: 11848376]
  14. J Microbiol Methods. 2003 Dec;55(3):727-37 [PMID: 14607415]
  15. Appl Microbiol Biotechnol. 2010 Jul;87(3):971-9 [PMID: 20376633]
  16. Mol Biol Evol. 2010 Feb;27(2):221-4 [PMID: 19854763]
  17. J Biotechnol. 2013 Jun 10;165(3-4):184-94 [PMID: 23602802]
  18. Trends Biotechnol. 2023 Feb;41(2):242-254 [PMID: 35940976]
  19. Sci Rep. 2018 Oct 3;8(1):14735 [PMID: 30283045]
  20. Mol Biol Evol. 2000 Apr;17(4):540-52 [PMID: 10742046]
  21. Bioresour Technol. 2017 Nov;243:393-399 [PMID: 28686929]
  22. Microb Cell Fact. 2017 Jul 11;16(1):118 [PMID: 28693571]
  23. J Bacteriol. 1996 Dec;178(23):6665-70 [PMID: 8955280]
  24. Curr Opin Biotechnol. 2000 Oct;11(5):478-83 [PMID: 11024367]
  25. Biotechnol Biofuels. 2020 Oct 20;13:176 [PMID: 33093870]
  26. Bioresour Technol. 2020 Oct;314:123746 [PMID: 32622282]
  27. Fungal Genet Biol. 2017 Mar;100:1-12 [PMID: 28064038]
  28. Microb Cell Fact. 2018 Aug 29;17(1):133 [PMID: 30157840]
  29. Bioresour Technol. 2015 Dec;198:445-55 [PMID: 26409857]
  30. Mol Biol Evol. 1997 Jul;14(7):685-95 [PMID: 9254330]
  31. Prep Biochem Biotechnol. 2015 Aug 18;45(6):515-29 [PMID: 25387364]
  32. Appl Microbiol Biotechnol. 2018 Jun;102(12):5221-5233 [PMID: 29704042]
  33. Environ Microbiol. 2013 Aug;15(8):2187-97 [PMID: 23414076]
  34. Front Bioeng Biotechnol. 2021 Jun 17;9:661562 [PMID: 34222212]
  35. Biotechnol Lett. 2020 Jun;42(6):945-956 [PMID: 32090297]
  36. Sci Total Environ. 2022 Nov 10;846:157358 [PMID: 35850328]
  37. J Biotechnol. 2004 Apr 8;109(1-2):63-81 [PMID: 15063615]
  38. J Mol Biol. 1983 Jun 5;166(4):557-80 [PMID: 6345791]
  39. Molecules. 2021 Dec 13;26(24): [PMID: 34946639]
  40. Biotechnol Biofuels. 2017 Mar 24;10:77 [PMID: 28352301]
  41. Antonie Van Leeuwenhoek. 2005 Aug;88(2):121-30 [PMID: 16096688]
  42. J Ind Microbiol Biotechnol. 2012 Sep;39(9):1333-43 [PMID: 22648525]
  43. Microb Cell Fact. 2020 Jul 11;19(1):138 [PMID: 32653007]
  44. Bioresour Technol. 2016 Sep;216:1040-8 [PMID: 27347651]
  45. Front Microbiol. 2019 Mar 18;10:547 [PMID: 30936863]
  46. Microb Cell Fact. 2021 Oct 9;20(1):195 [PMID: 34627248]
  47. Front Microbiol. 2017 Oct 10;8:1628 [PMID: 29067002]
  48. Syst Biol. 2010 May;59(3):307-21 [PMID: 20525638]
  49. Proc Natl Acad Sci U S A. 2022 Apr 5;119(14):e2107994119 [PMID: 35363566]

MeSH Term

Yarrowia
Aldehyde Reductase
Glycerol
Erythritol
Mannitol

Chemicals

arabitol
Aldehyde Reductase
Glycerol
Erythritol
Mannitol

Word Cloud

Created with Highcharts 10.0.0erythritollipolyticaosmoticerythrosereductasesynthesisYarrowiastressknockoutgenesproductionpolyolcontrolstrainincreasemannitolarabitolglycerolunconventionalyeastproducesosmoprotectantadaptstudyarrayputativereductasesresponsibleconversiond-erythroseanalyzedSinglemultiplestrainstestedabilityproducepolyolsconditionsLacksixaffectsignificantlycomparableDeletioneighthomologousresulted91%decrease53%almost8-foldcomparedAdditionallyutilizationimpairedmediainducedhigherpressureresultsresearchmayshednewlightYhelpdevelopstrategiesmodificationpathwaysmicroorganismsIn-depthanalysishomologs

Similar Articles

Cited By