The presence of circulating genetically abnormal cells in blood predicts risk of lung cancer in individuals with indeterminate pulmonary nodules.

Shahram Tahvilian, Joshua D Kuban, David F Yankelevitz, Daniel Leventon, Claudia I Henschke, Jeffrey Zhu, Lara Baden, Rowena Yip, Fred R Hirsch, Rebecca Reed, Ashley Brown, Allison Muldoon, Michael Trejo, Benjamin A Katchman, Michael J Donovan, Paul C Pagano
Author Information
  1. Shahram Tahvilian: LungLife AI, Inc, 2545 W. Hillcrest Drive, Suite 140, Thousand Oaks, CA, USA.
  2. Joshua D Kuban: Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
  3. David F Yankelevitz: Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  4. Daniel Leventon: LungLife AI, Inc, 2545 W. Hillcrest Drive, Suite 140, Thousand Oaks, CA, USA.
  5. Claudia I Henschke: Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  6. Jeffrey Zhu: Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  7. Lara Baden: LungLife AI, Inc, 2545 W. Hillcrest Drive, Suite 140, Thousand Oaks, CA, USA.
  8. Rowena Yip: Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  9. Fred R Hirsch: Icahn School of Medicine, Center for Thoracic Oncology, Tisch Cancer Institute at Mount Sinai, New York, NY, USA.
  10. Rebecca Reed: LungLife AI, Inc, 2545 W. Hillcrest Drive, Suite 140, Thousand Oaks, CA, USA.
  11. Ashley Brown: LungLife AI, Inc, 2545 W. Hillcrest Drive, Suite 140, Thousand Oaks, CA, USA.
  12. Allison Muldoon: LungLife AI, Inc, 2545 W. Hillcrest Drive, Suite 140, Thousand Oaks, CA, USA.
  13. Michael Trejo: LungLife AI, Inc, 2545 W. Hillcrest Drive, Suite 140, Thousand Oaks, CA, USA.
  14. Benjamin A Katchman: LungLife AI, Inc, 2545 W. Hillcrest Drive, Suite 140, Thousand Oaks, CA, USA.
  15. Michael J Donovan: LungLife AI, Inc, 2545 W. Hillcrest Drive, Suite 140, Thousand Oaks, CA, USA.
  16. Paul C Pagano: LungLife AI, Inc, 2545 W. Hillcrest Drive, Suite 140, Thousand Oaks, CA, USA. ppagano@lunglifeai.com.

Abstract

PURPOSE: Computed tomography is the standard method by which pulmonary nodules are detected. Greater than 40% of pulmonary biopsies are not lung cancer and therefore not necessary, suggesting that improved diagnostic tools are needed. The LungLB™ blood test was developed to aid the clinical assessment of indeterminate nodules suspicious for lung cancer. LungLB™ identifies circulating genetically abnormal cells (CGACs) that are present early in lung cancer pathogenesis.
METHODS: LungLB™ is a 4-color fluorescence in-situ hybridization assay for detecting CGACs from peripheral blood. A prospective correlational study was performed on 151 participants scheduled for a pulmonary nodule biopsy. Mann-Whitney, Fisher's Exact and Chi-Square tests were used to assess participant demographics and correlation of LungLB™ with biopsy results, and sensitivity and specificity were also evaluated.
RESULTS: Participants from Mount Sinai Hospital (n = 83) and MD Anderson (n = 68), scheduled for a pulmonary biopsy were enrolled to have a LungLB™ test. Additional clinical variables including smoking history, previous cancer, lesion size, and nodule appearance were also collected. LungLB™ achieved 77% sensitivity and 72% specificity with an AUC of 0.78 for predicting lung cancer in the associated needle biopsy. Multivariate analysis found that clinical and radiological factors commonly used in malignancy prediction models did not impact the test performance. High test performance was observed across all participant characteristics, including clinical categories where other tests perform poorly (Mayo Clinic Model, AUC = 0.52).
CONCLUSION: Early clinical performance of the LungLB™ test supports a role in the discrimination of benign from malignant pulmonary nodules. Extended studies are underway.

Keywords

References

  1. Microsyst Nanoeng. 2019 Feb 25;5:8 [PMID: 31057935]
  2. Ann Fam Med. 2020 May;18(3):243-249 [PMID: 32393560]
  3. Cancers (Basel). 2020 Apr 07;12(4): [PMID: 32272669]
  4. J Thorac Oncol. 2008 Sep;3(9):979-84 [PMID: 18758299]
  5. Environ Health Perspect. 2005 May;113(5):517-20 [PMID: 15866756]
  6. Clin Lung Cancer. 2017 Jan;18(1):e27-e34 [PMID: 27530054]
  7. Acta Cytol. 2020;64(6):511-519 [PMID: 32570234]
  8. Int J Cancer. 2019 Jun 15;144(12):3127-3137 [PMID: 30536653]
  9. PLoS One. 2014 Oct 31;9(10):e111597 [PMID: 25360587]
  10. Am J Respir Crit Care Med. 2021 Dec 1;204(11):1306-1316 [PMID: 34464235]
  11. Cancer Epidemiol Biomarkers Prev. 1995 Oct-Nov;4(7):743-9 [PMID: 8672991]
  12. N Engl J Med. 2011 Aug 4;365(5):395-409 [PMID: 21714641]
  13. BMC Cancer. 2021 Mar 10;21(1):263 [PMID: 33691657]
  14. Front Oncol. 2015 Sep 30;5:209 [PMID: 26484313]
  15. PLoS One. 2018 Jul 31;13(7):e0201242 [PMID: 30063725]
  16. Curr Opin Pulm Med. 2021 Jul 1;27(4):240-248 [PMID: 33973553]
  17. JAMA Netw Open. 2021 May 3;4(5):e2111613 [PMID: 34042991]
  18. Clin Cancer Res. 2009 Nov 15;15(22):6980-6 [PMID: 19887487]
  19. Front Oncol. 2021 Mar 11;11:638223 [PMID: 33777797]
  20. Ann Oncol. 2021 Sep;32(9):1167-1177 [PMID: 34176681]
  21. Chest. 2013 May;143(5 Suppl):e93S-e120S [PMID: 23649456]
  22. Clin Cancer Res. 2014 Sep 1;20(17):4673-88 [PMID: 24919570]
  23. Ann Am Thorac Soc. 2018 Oct;15(10):1117-1126 [PMID: 30272500]
  24. Sci Rep. 2017 Oct 18;7(1):13493 [PMID: 29044177]
  25. JCI Insight. 2019 Mar 7;4(5): [PMID: 30702443]
  26. J Thorac Dis. 2017 Aug;9(8):2551-2559 [PMID: 28932562]
  27. Cancer Cytopathol. 2020 Aug;128(8):553-562 [PMID: 32320527]
  28. JAMA Intern Med. 2019 Mar 1;179(3):324-332 [PMID: 30640382]
  29. Nature. 2015 Jan 29;517(7536):621-5 [PMID: 25533958]
  30. JAMA Netw Open. 2021 Dec 1;4(12):e2137508 [PMID: 34919136]
  31. N Engl J Med. 2020 Feb 6;382(6):503-513 [PMID: 31995683]
  32. CA Cancer J Clin. 2021 Jan;71(1):7-33 [PMID: 33433946]
  33. Int J Cancer. 2002 Dec 10;102(5):536-40 [PMID: 12432559]
  34. Cell Stem Cell. 2020 Mar 5;26(3):346-358.e4 [PMID: 31978363]
  35. Cancer Prev Res (Phila). 2017 Sep;10(9):514-524 [PMID: 28754664]
  36. Radiographics. 2018 Sep-Oct;38(5):1337-1350 [PMID: 30207935]
  37. Sci Rep. 2015 Jul 17;5:12270 [PMID: 26184843]
  38. Front Oncol. 2021 Apr 16;11:634316 [PMID: 33937034]
  39. Ann Thorac Surg. 2014 Apr;97(4):1142-8 [PMID: 24576597]
  40. Oncotarget. 2017 Feb 21;8(8):12917-12928 [PMID: 28039472]
  41. Lancet. 1999 Jul 10;354(9173):99-105 [PMID: 10408484]
  42. Nat Med. 2019 Oct;25(10):1534-1539 [PMID: 31591595]
  43. Clin Cancer Res. 2010 Aug 1;16(15):3976-87 [PMID: 20651054]
  44. Cancers (Basel). 2020 Jul 17;12(7): [PMID: 32708837]
  45. Ann Oncol. 2019 Feb 1;30(2):290-296 [PMID: 30535340]
  46. Am J Respir Crit Care Med. 2015 Nov 15;192(10):1208-14 [PMID: 26214244]
  47. Oncogene. 2013 May 23;32(21):2622-30 [PMID: 22777352]
  48. Nat Rev Clin Oncol. 2018 Sep;15(9):577-586 [PMID: 29968853]
  49. Science. 2011 Mar 25;331(6024):1559-64 [PMID: 21436443]
  50. Open Biol. 2017 Sep;7(9): [PMID: 28878044]
  51. Cancers (Basel). 2019 Dec 19;12(1): [PMID: 31861557]
  52. J Thorac Oncol. 2019 Mar;14(3):343-357 [PMID: 30529598]
  53. J Oncol. 2010;2010:617421 [PMID: 20016752]

Grants

  1. U2C CA271898/NCI NIH HHS

MeSH Term

Humans
Prospective Studies
Lung Neoplasms
Multiple Pulmonary Nodules
Lung
Biopsy
Solitary Pulmonary Nodule

Word Cloud

Created with Highcharts 10.0.0cancerLungLB™pulmonarynoduleslungtestclinicalbiopsybloodperformanceindeterminatecirculatinggeneticallyabnormalcellsCGACsschedulednoduletestsusedparticipantsensitivityspecificityalsoincludingEarlyPURPOSE:ComputedtomographystandardmethoddetectedGreater40%biopsiesthereforenecessarysuggestingimproveddiagnostictoolsneededdevelopedaidassessmentsuspiciousidentifiespresentearlypathogenesisMETHODS:4-colorfluorescencein-situhybridizationassaydetectingperipheralprospectivecorrelationalstudyperformed151participantsMann-WhitneyFisher'sExactChi-SquareassessdemographicscorrelationresultsevaluatedRESULTS:ParticipantsMountSinaiHospitaln = 83MDAndersonn = 68enrolledAdditionalvariablessmokinghistorypreviouslesionsizeappearancecollectedachieved77%72%AUC078predictingassociatedneedleMultivariateanalysisfoundradiologicalfactorscommonlymalignancypredictionmodelsimpactHighobservedacrosscharacteristicscategoriesperformpoorlyMayoClinicModelAUC = 052CONCLUSION:supportsrolediscriminationbenignmalignantExtendedstudiesunderwaypresencepredictsriskindividualsdetectionIndeterminateLiquidLungPulmonary

Similar Articles

Cited By