Spectral dynamics of guided edge removals and identifying transient amplifiers for death-Birth updating.

Hendrik Richter
Author Information
  1. Hendrik Richter: Faculty of Engineering, HTWK Leipzig University of Applied Sciences, Leipzig, Germany. hendrik.richter@htwk-leipzig.de. ORCID

Abstract

The paper deals with two interrelated topics: (1) identifying transient amplifiers in an iterative process, and (2) analyzing the process by its spectral dynamics, which is the change in the graph spectra by edge manipulation. Transient amplifiers are networks representing population structures which shift the balance between natural selection and random drift. Thus, amplifiers are highly relevant for understanding the relationships between spatial structures and evolutionary dynamics. We study an iterative procedure to identify transient amplifiers for death-Birth updating. The algorithm starts with a regular input graph and iteratively removes edges until desired structures are achieved. Thus, a sequence of candidate graphs is obtained. The edge removals are guided by quantities derived from the sequence of candidate graphs. Moreover, we are interested in the Laplacian spectra of the candidate graphs and analyze the iterative process by its spectral dynamics. The results show that although transient amplifiers for death-Birth updating are generally rare, a substantial number of them can be obtained by the proposed procedure. The graphs identified share structural properties and have some similarity to dumbbell and barbell graphs. We analyze amplification properties of these graphs and also two more families of bell-like graphs and show that further transient amplifiers for death-Birth updating can be found. Finally, it is demonstrated that the spectral dynamics possesses characteristic features useful for deducing links between structural and spectral properties. These feature can also be taken for distinguishing transient amplifiers among evolutionary graphs in general.

Keywords

References

  1. PLoS Comput Biol. 2015 Nov 06;11(11):e1004437 [PMID: 26544962]
  2. Nat Commun. 2021 Jun 29;12(1):4009 [PMID: 34188036]
  3. Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14966-9 [PMID: 14657359]
  4. Nature. 2017 Apr 13;544(7649):227-230 [PMID: 28355181]
  5. PLoS Comput Biol. 2021 Feb 2;17(2):e1008695 [PMID: 33529219]
  6. Phys Rev E. 2017 Jul;96(1-1):012313 [PMID: 29347209]
  7. J Theor Biol. 2007 Jun 21;246(4):681-94 [PMID: 17350049]
  8. PLoS Comput Biol. 2020 Jan 17;16(1):e1007494 [PMID: 31951609]
  9. Sci Rep. 2019 May 6;9(1):6946 [PMID: 31061385]
  10. Evol Appl. 2017 Apr 14;10(6):590-602 [PMID: 28616066]
  11. J Theor Biol. 2018 Aug 14;451:10-18 [PMID: 29727631]
  12. Elife. 2017 Dec 21;6: [PMID: 29266000]
  13. J Theor Biol. 2003 Aug 21;223(4):433-50 [PMID: 12875822]
  14. J Math Biol. 2021 May 16;82(7):61 [PMID: 33993365]
  15. Biosystems. 2012 Mar;107(3):186-96 [PMID: 22133717]
  16. PLoS Comput Biol. 2020 Jul 6;16(7):e1008010 [PMID: 32628660]
  17. Bull Math Biol. 2000 Sep;62(5):799-848 [PMID: 11016086]
  18. Biosystems. 2017 Mar - Apr;153-154:26-44 [PMID: 28238940]
  19. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  20. Commun Biol. 2018 Jun 14;1:71 [PMID: 30271952]
  21. Nat Commun. 2019 Nov 8;10(1):5107 [PMID: 31704922]
  22. Commun Biol. 2019 Apr 23;2:137 [PMID: 31044162]
  23. Evol Appl. 2016 Mar 08;9(4):565-82 [PMID: 27099622]
  24. Biol Direct. 2016 Aug 23;11:41 [PMID: 27549612]
  25. J Theor Biol. 2015 Oct 7;382:44-56 [PMID: 26122591]
  26. PLoS Comput Biol. 2020 Jan 17;16(1):e1007529 [PMID: 31951612]
  27. Bull Math Biol. 2006 Oct;68(7):1573-99 [PMID: 16832734]
  28. Science. 2013 Nov 22;342(6161):995-8 [PMID: 24264992]
  29. Biosystems. 2019 Jun;180:88-100 [PMID: 30914346]
  30. Sci Rep. 2017 Dec;7(1):82 [PMID: 28250441]
  31. Commun Biol. 2019 Apr 23;2:138 [PMID: 31044163]
  32. PLoS One. 2020 Feb 12;15(2):e0228728 [PMID: 32050004]
  33. J Math Biol. 2021 Feb 3;82(3):14 [PMID: 33534054]
  34. Theory Biosci. 2019 Nov;138(2):261-275 [PMID: 30900107]

MeSH Term

Population Dynamics
Biological Evolution
Selection, Genetic
Algorithms

Word Cloud

Created with Highcharts 10.0.0amplifiersgraphstransientdynamicsspectraldeath-BirthupdatingiterativeprocessspectraedgestructurescandidatecanpropertiestwoidentifyinggraphmanipulationTransientThusevolutionaryproceduresequenceobtainedremovalsguidedLaplaciananalyzeshowstructuralalsopaperdealsinterrelatedtopics:12analyzingchangenetworksrepresentingpopulationshiftbalancenaturalselectionrandomdrifthighlyrelevantunderstandingrelationshipsspatialstudyidentifyalgorithmstartsregularinputiterativelyremovesedgesdesiredachievedquantitiesderivedMoreoverinterestedresultsalthoughgenerallyraresubstantialnumberproposedidentifiedsharesimilaritydumbbellbarbellamplificationfamiliesbell-likefoundFinallydemonstratedpossessescharacteristicfeaturesusefuldeducinglinksfeaturetakendistinguishingamonggeneralSpectralEdgeEvolutionaryRegular

Similar Articles

Cited By