Embryonic Spinal Cord Innervation in Human Trunk Organogenesis Gastruloids: Cardiac Versus Enteric Customization and Beyond.

Zachary T Olmsted, Maria Belen Paredes-Espinosa, Janet L Paluh
Author Information
  1. Zachary T Olmsted: State University of New York Polytechnic Institute, College of Nanoscale Science and Engineering, Nanobioscience, Albany, NY, USA.
  2. Maria Belen Paredes-Espinosa: State University of New York Polytechnic Institute, College of Nanoscale Science and Engineering, Nanobioscience, Albany, NY, USA.
  3. Janet L Paluh: State University of New York Polytechnic Institute, College of Nanoscale Science and Engineering, Nanobioscience, Albany, NY, USA.

Abstract

Trunk-biased human gastruloids provide the ability to couple developmentally relevant spinal neurogenesis and organ morphogenesis via spatiotemporal self-organization events from derivatives of the three germ layers. The multi-lineage nature of gastruloids provides the full complexity of regulatory signaling cues that surpasses directed organoids and lays the foundation for an ex vivo self-evolving system. Here we detail two distinct protocols for trunk-biased gastruloids from an elongated, polarized structure with coordinated organ-specific neural patterning. Following an induction phase to caudalize iPSCs to trunk phenotype, divergent features of organogenesis and end-organ innervation yield separate models of enteric and cardiac nervous system formation. Both protocols are permissive to multi-lineage development and allow the study of neural integration events within a native, embryo-like context. We discuss the customizability of human gastruloids and the optimization of initial and extended conditions that maintain a permissive environment for multi-lineage differentiation and integration.

Keywords

References

  1. Shao Y, Fu J (2022) Engineering multiscale structural orders for high-fidelity embryoids and organoids. Cell Stem Cell 29:722–743 [DOI: 10.1016/j.stem.2022.04.003]
  2. Shi Y, Wu Q, Wang X (2021) Modeling brain development and diseases with human cerebral organoids. Curr Opin Neurobiol 66:103–115 [DOI: 10.1016/j.conb.2020.09.006]
  3. Olmsted ZT, Paluh JL (2021a) Stem cell neurodevelopmental solutions for restorative treatments of the human trunk and spine. Front Cell Neurosci 15:667590 [DOI: 10.3389/fncel.2021.667590]
  4. Olmsted ZT, Paluh JL (2021b) Co-development of central and peripheral neurons with trunk mesendoderm in human elongating multi-lineage organized gastruloids. Nat Commun 12:3020 [DOI: 10.1038/s41467-021-23294-7]
  5. Olmsted ZT, Paluh JL (2022a) A combined human gastruloid model of cardiogenesis and neurogenesis. iScience 25:104486 [DOI: 10.1016/j.isci.2022.104486]
  6. Faustino Martins JM, Fischer C, Urzi A et al (2020) Self-organizing 3D human trunk neuromuscular organoids. Cell Stem Cell 26:172–186 [DOI: 10.1016/j.stem.2019.12.007]
  7. Anderson C, Khan MAF, Wong F et al (2016) A strategy to discover new organizers identifies a putative heart organizer. Nat Commun 7:12656 [DOI: 10.1038/ncomms12656]
  8. Olmsted ZT, Paredes-Espinosa MB, Paluh JL (2022b) Generation of human elongating multi-lineage organized cardiac gastruloids. STAR Protoc 3:101898 [DOI: 10.1016/j.xpro.2022.101898]
  9. Rossi G, Broguiere N, Miyamoto M et al (2021) Capturing cardiogenesis in gastruloids. Cell Stem Cell 28:230–240 [DOI: 10.1016/j.stem.2020.10.013]
  10. Olmsted ZT, Paluh JL (2021c) Generation of human elongating multi-lineage organized (EMLO) gastruloids. Research Square. https://doi.org/10.21203/rs.3.pex-1441/v1
  11. Chang EA, Tomov ML, Suhr ST et al (2015) Derivation of ethnically diverse human induced pluripotent stem cell lines. Sci Rep 5:15234 [DOI: 10.1038/srep15234]
  12. Tomov ML, Olmsted ZT, Dogan H et al (2016) Distinct and shared determinants of cardiomyocyte contractility in multi-lineage competent ethnically diverse human iPSCs. Sci Rep 6:37637 [DOI: 10.1038/srep37637]
  13. Adam M, Potter AS, Potter SS (2017) Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development. Development 144:3625–3632 [PMID: 28851704]
  14. Gouti M, Tsakiridis A, Wymeersch FJ et al (2014) In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signaling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol 12:e1001937 [DOI: 10.1371/journal.pbio.1001937]
  15. Olmsted ZT, Stigliano C, Badri A et al (2020) Fabrication of homotypic neural ribbons as a multiplex platform optimized for spinal cord delivery. Sci Rep 10:12939 [DOI: 10.1038/s41598-020-69274-7]
  16. Silva AC, Matthys OB, Joy DA et al (2021) Co-emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC-derived organoids. Cell Stem Cell 28:2137–2152 [DOI: 10.1016/j.stem.2021.11.007]
  17. Drakhlis L, Biswanath S, Farr C-M et al (2021) Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol 39:737–746 [DOI: 10.1038/s41587-021-00815-9]
  18. Hofbauer P, Jahnel SM, Papai N et al (2021) Cardioids reveal self-organizing principles of human cardiogenesis. Cell 184:3299–3317 [DOI: 10.1016/j.cell.2021.04.034]
  19. George RM, Maldonado-Velez G, Firulli AB (2020) The heart of the neural crest: cardiac neural crest cells in development and regeneration. Development 147:dev188706 [DOI: 10.1242/dev.188706]
  20. Rajendran PS, Challis RC, Fowlkes CC et al (2019) Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nat Commun 10:1944 [DOI: 10.1038/s41467-019-09770-1]
  21. Fedele L, Brand T (2020) The intrinsic cardiac nervous system and its role in cardiac pacemaking and conduction. J Cardiovasc Dev Dis 7:54 [PMID: 33255284]
  22. Rossi G, Giger S, Hubscher T, Lutolf MP (2022) Gastruloids as in vitro models of embryonic blood development with spatial and temporal resolution. Sci Rep 12:13380 [DOI: 10.1038/s41598-022-17265-1]
  23. Ragusa D, Suen C-W, Cortes GT et al (2022) Dissecting infant leukemia developmental origins with a hemogenic gastruloid model. bioRxiv. https://doi.org/10.1101/2022.10.07.511362
  24. Veenvliet JV, Bolondi A, Kretzmer H et al (2020) Mouse embryonic stem cells self-organize intro trunk-like structures with neural tube and somites. Science 370:eaba4937 [DOI: 10.1126/science.aba4937]
  25. Girgin MU, Broguiere N, Mattolini L, Lutolf MP (2021) Gastruloids generated without exogenous Wnt activation develop anterior neural tissues. Stem Cell Rep 16:1–13 [DOI: 10.1016/j.stemcr.2021.03.017]
  26. Vianello S, Lutolf MP (2021) In vitro endoderm emergence and self-organisation in the absence of extraembryonic tissues and embryonic architecture. bioRxiv. https://doi.org/10.1101/2020.06.07.138883
  27. Farag N, Schiff C, Nachman I (2023) Coordination between endoderm progression and gastruloid elongation controls endodermal morphotype choice. bioRxiv. https://doi.org/10.1101/2023.02.07.527329

MeSH Term

Humans
Gastrula
Organogenesis
Signal Transduction
Organoids
Spinal Cord

Word Cloud

Created with Highcharts 10.0.0gastruloidsmulti-lineagehumaneventssystemprotocolsneuralpermissiveintegrationSpinalInnervationCardiacEntericTrunk-biasedprovideabilitycoupledevelopmentallyrelevantspinalneurogenesisorganmorphogenesisviaspatiotemporalself-organizationderivativesthreegermlayersnatureprovidesfullcomplexityregulatorysignalingcuessurpassesdirectedorganoidslaysfoundationexvivoself-evolvingdetailtwodistincttrunk-biasedelongatedpolarizedstructurecoordinatedorgan-specificpatterningFollowinginductionphasecaudalizeiPSCstrunkphenotypedivergentfeaturesorganogenesisend-organinnervationyieldseparatemodelsentericcardiacnervousformationdevelopmentallowstudywithinnativeembryo-likecontextdiscusscustomizabilityoptimizationinitialextendedconditionsmaintainenvironmentdifferentiationEmbryonicCordHumanTrunkOrganogenesisGastruloids:VersusCustomizationBeyondGastruloidMulti-cellularMulti-lineageOrganoidcord

Similar Articles

Cited By