Decontamination protocols affect the internal microbiota of ticks.

Natalia Fernández-Ruiz, Sophia Pinecki-Socias, Agustín Estrada-Peña, Alejandra Wu-Chuang, Apolline Maitre, Dasiel Obregón, Alejandro Cabezas-Cruz, Ignacio de Blas, Ard M Nijhof
Author Information
  1. Natalia Fernández-Ruiz: Faculty of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain. natalia.ferru@gmail.com.
  2. Sophia Pinecki-Socias: Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
  3. Agustín Estrada-Peña: Faculty of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain.
  4. Alejandra Wu-Chuang: Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
  5. Apolline Maitre: Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
  6. Dasiel Obregón: School of Environmental Sciences, University of Guelph, Guelph, ON, Canada.
  7. Alejandro Cabezas-Cruz: Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
  8. Ignacio de Blas: Faculty of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain.
  9. Ard M Nijhof: Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.

Abstract

Studies on the microbiota of ticks have promoted hypotheses about the combined effects of the bacterial community, its functional contributions to the tick's physiology or probable competition effects with some tick-borne pathogens. However, knowledge on the origin of the microbiota of newly hatched larvae is missing. This study aimed to elucidate the source(s) of the microbiota in unfed tick larvae, addressing the composition of the "core microbiota" and the best ways to decontaminate eggs for microbiota studies. We applied laboratory degree bleach washes and/or ultraviolet light treatments on engorged Rhipicephalus australis females and/or their eggs. No significant effects of these treatments on the reproductive parameters of females and the hatching rates of eggs were observed. However, the different treatments did show striking effects on the composition of the microbiota. The results indicated that bleach washes disrupted the internal tick microbiota in females, implying that bleach may have entered the tick and subsequently affected the microbiota. Furthermore, the analyses of results demonstrated that the ovary is a main source of tick microbiota, while the contribution of Gené's organ (a part of the female reproductive system that secretes a protective wax coat onto tick eggs) or the male's spermatophore requires further investigation. Further studies are needed to identify best practice protocols for the decontamination of ticks for microbiota studies.

Keywords

References

  1. Adv Microb Physiol. 2014;65:203-56 [PMID: 25476767]
  2. Nat Commun. 2017 Aug 4;8(1):184 [PMID: 28775250]
  3. Appl Environ Microbiol. 2021 Aug 26;87(18):e0064121 [PMID: 34191531]
  4. BMC Genomics. 2012 Jun 22;13:268 [PMID: 22727144]
  5. Nat Methods. 2015 Feb;12(2):115-21 [PMID: 25633503]
  6. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  7. Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):20025-20032 [PMID: 31527278]
  8. Front Cell Infect Microbiol. 2022 Nov 02;12:1049646 [PMID: 36405964]
  9. Sci Rep. 2016 Sep 20;6:33670 [PMID: 27645766]
  10. Int J Mol Sci. 2023 Jan 06;24(2): [PMID: 36674613]
  11. Curr Res Parasitol Vector Borne Dis. 2021 Jun 06;1:100036 [PMID: 35284884]
  12. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 [PMID: 12136088]
  13. Trends Parasitol. 2016 Sep;32(9):739-749 [PMID: 27236581]
  14. Clin Microbiol Rev. 2016 Apr;29(2):349-74 [PMID: 26960939]
  15. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  16. PLoS Comput Biol. 2012;8(9):e1002687 [PMID: 23028285]
  17. J Chem Ecol. 2018 Mar;44(3):235-247 [PMID: 29468480]
  18. Microbiome. 2017 Mar 3;5(1):27 [PMID: 28253908]
  19. Microb Pathog. 2019 May;130:81-94 [PMID: 30849490]
  20. J Parasitol. 2022 May 1;108(3):245-253 [PMID: 35687318]
  21. Exp Appl Acarol. 1986 Jun;2(2):187-98 [PMID: 3451863]
  22. Microbiome. 2022 Oct 17;10(1):173 [PMID: 36253842]
  23. Nat Rev Microbiol. 2020 Oct;18(10):587-600 [PMID: 32651470]
  24. Front Vet Sci. 2021 Aug 17;8:710352 [PMID: 34485437]
  25. Front Microbiol. 2020 Apr 22;11:493 [PMID: 32390951]
  26. Front Cell Infect Microbiol. 2022 Nov 16;12:990889 [PMID: 36467722]
  27. Acta Trop. 1994 Oct;58(1):51-71 [PMID: 7863854]
  28. Ticks Tick Borne Dis. 2021 Sep;12(5):101768 [PMID: 34119873]
  29. PLoS Pathog. 2015 May 15;11(5):e1004892 [PMID: 25978383]
  30. Ticks Tick Borne Dis. 2019 Jun;10(4):848-852 [PMID: 31006611]
  31. Curr Opin Insect Sci. 2020 Jun;39:84-90 [PMID: 32339931]
  32. Microbiome. 2018 Dec 17;6(1):226 [PMID: 30558668]
  33. Parasite Immunol. 2021 May;43(5):e12813 [PMID: 33314216]
  34. Front Microbiol. 2020 Jun 09;11:1093 [PMID: 32655509]
  35. Parasit Vectors. 2019 May 28;12(1):268 [PMID: 31138324]
  36. Nat Rev Microbiol. 2014 Sep;12(9):635-45 [PMID: 25118885]
  37. Front Immunol. 2021 Jul 12;12:704621 [PMID: 34322135]
  38. Front Physiol. 2022 Sep 09;13:932130 [PMID: 36160860]
  39. Front Cell Infect Microbiol. 2022 Nov 21;12:1037387 [PMID: 36478675]
  40. J Clin Invest. 2010 Sep;120(9):3179-90 [PMID: 20739755]
  41. Q J Microsc Sci. 1948 Sep;89(Pt 3):291-322 [PMID: 18888183]
  42. Appl Environ Microbiol. 2012 Jun;78(12):4110-6 [PMID: 22467507]
  43. Sci Rep. 2017 Dec 14;7(1):17554 [PMID: 29242567]
  44. BMC Microbiol. 2011 Jan 06;11(1):6 [PMID: 21211038]
  45. Mol Ecol Resour. 2019 Nov;19(6):1516-1530 [PMID: 31379089]
  46. Trends Microbiol. 2009 Mar;17(3):109-18 [PMID: 19231189]
  47. Dokl Biol Sci. 2003 Nov-Dec;393:527-30 [PMID: 14994541]
  48. mSystems. 2016 Jul 19;1(4): [PMID: 27822541]
  49. PLoS One. 2020 May 15;15(5):e0232398 [PMID: 32413031]
  50. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  51. Microbiome. 2018 May 17;6(1):90 [PMID: 29773078]
  52. FEMS Microbiol Ecol. 2015 Dec;91(12): [PMID: 26542076]
  53. Sci Rep. 2021 May 21;11(1):10686 [PMID: 34021230]
  54. Curr Biol. 2018 Jun 18;28(12):1896-1902.e5 [PMID: 29861133]
  55. Trends Parasitol. 2019 Sep;35(9):725-737 [PMID: 31331734]
  56. Parasit Vectors. 2015 Jun 25;8:345 [PMID: 26108374]
  57. Nat Rev Microbiol. 2018 Sep;16(9):567-576 [PMID: 29789680]
  58. Microb Ecol. 2022 Oct;84(3):868-878 [PMID: 34599659]
  59. Nucleic Acids Res. 2017 Jul 3;45(W1):W180-W188 [PMID: 28449106]

MeSH Term

Animals
Female
Male
Decontamination
Rhipicephalus
Bacteria
Microbiota
Ovary

Word Cloud

Created with Highcharts 10.0.0microbiotatickeffectseggsticksstudiesbleachtreatmentsfemalesHoweverlarvaesourcecompositionbestwashesand/orreproductiveresultsinternalprotocolsStudiespromotedhypothesescombinedbacterialcommunityfunctionalcontributionstick'sphysiologyprobablecompetitiontick-bornepathogensknowledgeoriginnewlyhatchedmissingstudyaimedelucidatesunfedaddressing"coremicrobiota"waysdecontaminateappliedlaboratorydegreeultravioletlightengorgedRhipicephalusaustralissignificantparametershatchingratesobserveddifferentshowstrikingindicateddisruptedimplyingmayenteredsubsequentlyaffectedFurthermoreanalysesdemonstratedovarymaincontributionGené'sorganpartfemalesystemsecretesprotectivewaxcoatontomale'sspermatophorerequiresinvestigationneededidentifypracticedecontaminationDecontaminationaffectBleachExternalcontaminationMicrobiotaTicks

Similar Articles

Cited By