Community- and genome-based evidence for a shaping influence of redox potential on bacterial protein evolution.

Jeffrey M Dick, Delong Meng
Author Information
  1. Jeffrey M Dick: Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring of Ministry of Education, School of Geosciences and Info-Physics, Central South University , Changsha, China. ORCID
  2. Delong Meng: Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University , Changsha, China.

Abstract

Despite deep interest in how environments shape microbial communities, whether redox conditions influence the sequence composition of genomes is not well known. We predicted that the carbon oxidation state () of protein sequences would be positively correlated with redox potential (Eh). To test this prediction, we used taxonomic classifications for 68 publicly available 16S rRNA gene sequence data sets to estimate the abundances of archaeal and bacterial genomes in river & seawater, lake & pond, geothermal, hyperalkaline, groundwater, sediment, and soil environments. Locally, of community reference proteomes (i.e., all the protein sequences in each genome, weighted by taxonomic abundances but not by protein abundances) is positively correlated with Eh corrected to pH 7 (Eh7) for the majority of data sets for bacterial communities in each type of environment, and global-scale correlations are positive for bacterial communities in all environments. In contrast, archaeal communities show approximately equal frequencies of positive and negative correlations in individual data sets, and a positive pan-environmental correlation for archaea only emerges after limiting the analysis to samples with reported oxygen concentrations. These results provide empirical evidence that geochemistry modulates genome evolution and may have distinct effects on bacteria and archaea. IMPORTANCE The identification of environmental factors that influence the elemental composition of proteins has implications for understanding microbial evolution and biogeography. Millions of years of genome evolution may provide a route for protein sequences to attain incomplete equilibrium with their chemical environment. We developed new tests of this chemical adaptation hypothesis by analyzing trends of the carbon oxidation state of community reference proteomes for microbial communities in local- and global-scale redox gradients. The results provide evidence for widespread environmental shaping of the elemental composition of protein sequences at the community level and establish a rationale for using thermodynamic models as a window into geochemical effects on microbial community assembly and evolution.

Keywords

References

  1. Environ Pollut. 2021 Oct 1;286:117267 [PMID: 33965803]
  2. Sci Total Environ. 2019 Apr 10;660:501-511 [PMID: 30640117]
  3. ISME Commun. 2022 Jun 30;2(1):53 [PMID: 37938662]
  4. ISME J. 2014 Jan;8(1):19-30 [PMID: 23985743]
  5. ISME J. 2016 Nov;10(11):2557-2568 [PMID: 27022995]
  6. Biology (Basel). 2022 Jun 14;11(6): [PMID: 35741434]
  7. mSphere. 2020 Jan 29;5(1): [PMID: 31996419]
  8. Environ Microbiol. 2016 May;18(5):1403-14 [PMID: 26271760]
  9. Microbiome. 2017 Aug 9;5(1):96 [PMID: 28793929]
  10. J Environ Sci (China). 2019 Jan;75:224-232 [PMID: 30473288]
  11. Sci Rep. 2019 Apr 17;9(1):6231 [PMID: 30996247]
  12. Front Microbiol. 2018 Jun 05;9:1138 [PMID: 29922252]
  13. J Hazard Mater. 2021 Aug 15;416:126141 [PMID: 34492930]
  14. Nat Commun. 2017 Nov 16;8(1):1558 [PMID: 29146960]
  15. Microb Ecol. 2020 Jul;80(1):191-201 [PMID: 31873773]
  16. Genomics Proteomics Bioinformatics. 2019 Feb;17(1):76-90 [PMID: 31026580]
  17. Environ Sci Technol. 2016 Jul 19;50(14):7658-70 [PMID: 27305345]
  18. Nat Commun. 2020 Dec 17;11(1):6406 [PMID: 33335105]
  19. Mar Pollut Bull. 2018 Nov;136:309-321 [PMID: 30509812]
  20. Nucleic Acids Res. 2021 Jan 8;49(D1):D1020-D1028 [PMID: 33270901]
  21. Sci Data. 2017 Oct 31;4:170160 [PMID: 29087368]
  22. Microorganisms. 2020 Dec 29;9(1): [PMID: 33383678]
  23. Front Microbiol. 2021 Mar 17;12:633428 [PMID: 33815315]
  24. Mol Ecol. 2021 Mar;30(6):1492-1504 [PMID: 33522045]
  25. Front Microbiol. 2021 Jul 21;12:569020 [PMID: 34367076]
  26. Mol Cell Probes. 2013 Oct-Dec;27(5-6):193-9 [PMID: 23831146]
  27. Environ Pollut. 2018 Nov;242(Pt B):1729-1739 [PMID: 30064876]
  28. Front Microbiol. 2017 Nov 02;8:2148 [PMID: 29163432]
  29. ISME J. 2012 Aug;6(8):1621-4 [PMID: 22402401]
  30. mSystems. 2022 Feb 22;7(1):e0137421 [PMID: 35014872]
  31. Mol Cell Proteomics. 2009 Dec;8(12):2770-7 [PMID: 19767571]
  32. mSystems. 2018 Jul 3;3(4): [PMID: 29984314]
  33. Environ Microbiol. 2014 Nov;16(11):3515-32 [PMID: 24905086]
  34. Mol Ecol. 2021 Jul;30(13):2969-2987 [PMID: 32479653]
  35. Environ Sci Pollut Res Int. 2019 Sep;26(26):26765-26781 [PMID: 31300992]
  36. J Mol Evol. 2022 Apr;90(2):182-199 [PMID: 35279735]
  37. Nat Biotechnol. 2020 Jun;38(6):685-688 [PMID: 32483366]
  38. Geobiology. 2023 Mar;21(2):262-273 [PMID: 36376996]
  39. J Environ Manage. 2019 Apr 1;235:368-376 [PMID: 30708274]
  40. Front Microbiol. 2018 Apr 06;9:680 [PMID: 29696004]
  41. Anal Chim Acta. 2016 Feb 4;906:98-109 [PMID: 26772129]
  42. PLoS One. 2014 Aug 07;9(8):e104134 [PMID: 25101630]
  43. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  44. Microbiome. 2022 Mar 1;10(1):37 [PMID: 35227326]
  45. Sci Total Environ. 2020 Dec 1;746:140992 [PMID: 32745849]
  46. Trends Biochem Sci. 2011 Jul;36(7):388-96 [PMID: 21616670]
  47. Sci Data. 2019 Aug 30;6(1):163 [PMID: 31471542]
  48. Water Res. 2021 Oct 15;205:117638 [PMID: 34560619]
  49. Nucleic Acids Res. 2020 Jun 4;48(10):5201-5216 [PMID: 32382758]
  50. Water Res. 2020 Mar 1;170:115341 [PMID: 31790889]
  51. Nucleic Acids Res. 2011 Jan;39(Database issue):D19-21 [PMID: 21062823]
  52. Water Res. 2021 Sep 1;202:117428 [PMID: 34303166]
  53. Front Microbiol. 2017 Feb 07;8:56 [PMID: 28223966]
  54. J Contam Hydrol. 2020 Oct;234:103657 [PMID: 32777591]
  55. Sci Total Environ. 2019 Feb 1;649:1281-1292 [PMID: 30308898]
  56. Elife. 2019 Sep 10;8: [PMID: 31502536]
  57. Environ Microbiol Rep. 2016 Apr;8(2):210-7 [PMID: 26711582]
  58. ISME J. 2019 Sep;13(9):2150-2161 [PMID: 31024152]
  59. Microb Ecol. 2022 May;83(4):850-868 [PMID: 34766210]
  60. Microb Ecol. 2021 Nov;82(4):885-896 [PMID: 33725151]
  61. Front Microbiol. 2016 Dec 06;7:1917 [PMID: 27999565]
  62. Curr Opin Genet Dev. 2022 Dec;77:101984 [PMID: 36162152]
  63. PeerJ. 2017 May 3;5:e3244 [PMID: 28480139]
  64. J Hazard Mater. 2019 Apr 5;367:109-119 [PMID: 30594709]
  65. PLoS One. 2021 Feb 19;16(2):e0240952 [PMID: 33606695]
  66. PeerJ. 2016 Oct 18;4:e2584 [PMID: 27781170]
  67. Microb Ecol. 2023 May;85(4):1338-1355 [PMID: 35503575]
  68. Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 [PMID: 24288368]
  69. mSystems. 2022 Feb 22;7(1):e0125521 [PMID: 35191775]
  70. EMBO Rep. 2005 Dec;6(12):1208-13 [PMID: 16200051]
  71. Nat Commun. 2018 Jul 23;9(1):2876 [PMID: 30038374]
  72. BMC Microbiol. 2020 Nov 24;20(Suppl 2):349 [PMID: 33228530]
  73. Environ Microbiol. 2019 Feb;21(2):682-701 [PMID: 30585382]
  74. Front Microbiol. 2021 Mar 19;12:634025 [PMID: 33815317]
  75. mSystems. 2021 Oct 26;6(5):e0030021 [PMID: 34519519]
  76. Sci Rep. 2022 Mar 11;12(1):4257 [PMID: 35277525]
  77. Environ Microbiol. 2018 Jul;20(7):2483-2499 [PMID: 29708639]
  78. Environ Microbiol. 2020 Jun;22(6):2329-2345 [PMID: 32249550]
  79. Elife. 2022 Nov 29;11: [PMID: 36444646]
  80. Sci Rep. 2020 Apr 6;10(1):5949 [PMID: 32249806]
  81. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11436-40 [PMID: 17592124]
  82. J Environ Manage. 2019 Nov 1;249:109425 [PMID: 31446121]
  83. Sci Total Environ. 2021 Sep 20;788:147873 [PMID: 34134371]
  84. Environ Microbiol. 2021 Jul;23(7):3523-3540 [PMID: 31894632]
  85. Environ Microbiol. 2017 Aug;19(8):3374-3386 [PMID: 28677203]
  86. Front Microbiol. 2017 May 23;8:916 [PMID: 28588569]
  87. PLoS One. 2013 Jun 10;8(6):e66662 [PMID: 23762495]
  88. J R Soc Interface. 2014 Nov 6;11(100):20131095 [PMID: 25165594]
  89. Environ Pollut. 2020 Aug;263(Pt A):114561 [PMID: 32320889]
  90. Sci Total Environ. 2022 Jun 25;827:154358 [PMID: 35259383]
  91. Sci Total Environ. 2020 Jun 10;720:137574 [PMID: 32145630]
  92. Sci Total Environ. 2022 Oct 10;842:156629 [PMID: 35691343]
  93. FEMS Microbiol Ecol. 2017 Jul 1;93(7): [PMID: 28637304]

Grants

  1. 2020WK2022, 2022SK2076/Key Research and Development Program of Hunan Province
  2. kq2202089/Natural Science Foundation of Changsha

MeSH Term

Bacterial Proteins
RNA, Ribosomal, 16S
Proteome
Geologic Sediments
Phylogeny
Archaea
Bacteria
Carbon
Oxidation-Reduction

Chemicals

Bacterial Proteins
RNA, Ribosomal, 16S
Proteome
Carbon

Word Cloud

Created with Highcharts 10.0.0proteinevolutioncommunitiesredoxmicrobialsequencesbacterialcommunityenvironmentsinfluencecompositionoxidationstatepotentialdatasetsabundancesgenomepositiveprovideevidencesequencegenomescarbonpositivelycorrelatedEhtaxonomicarchaeal&referenceproteomesenvironmentglobal-scalecorrelationsarchaeaanalysisresultsgeochemistrymayeffectsenvironmentalelementalchemicalshapingDespitedeepinterestshapewhetherconditionswellknownpredictedtestpredictionusedclassifications68publiclyavailable16SrRNAgeneestimateriverseawaterlakepondgeothermalhyperalkalinegroundwatersedimentsoilLocallyieweightedcorrectedpH7Eh7majoritytypecontrastshowapproximatelyequalfrequenciesnegativeindividualpan-environmentalcorrelationemergeslimitingsamplesreportedoxygenconcentrationsempiricalmodulatesdistinctbacteriaIMPORTANCEidentificationfactorsproteinsimplicationsunderstandingbiogeographyMillionsyearsrouteattainincompleteequilibriumdevelopednewtestsadaptationhypothesisanalyzingtrendslocal-gradientswidespreadlevelestablishrationaleusingthermodynamicmodelswindowgeochemicalassemblyCommunity-genome-basedEh–pHdiagramglobalthermodynamics

Similar Articles

Cited By