Latent Dirichlet Allocation modeling of environmental microbiomes.

Anastasiia Kim, Sanna Sevanto, Eric R Moore, Nicholas Lubbers
Author Information
  1. Anastasiia Kim: Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America. ORCID
  2. Sanna Sevanto: Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
  3. Eric R Moore: Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
  4. Nicholas Lubbers: Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.

Abstract

Interactions between stressed organisms and their microbiome environments may provide new routes for understanding and controlling biological systems. However, microbiomes are a form of high-dimensional data, with thousands of taxa present in any given sample, which makes untangling the interaction between an organism and its microbial environment a challenge. Here we apply Latent Dirichlet Allocation (LDA), a technique for language modeling, which decomposes the microbial communities into a set of topics (non-mutually-exclusive sub-communities) that compactly represent the distribution of full communities. LDA provides a lens into the microbiome at broad and fine-grained taxonomic levels, which we show on two datasets. In the first dataset, from the literature, we show how LDA topics succinctly recapitulate many results from a previous study on diseased coral species. We then apply LDA to a new dataset of maize soil microbiomes under drought, and find a large number of significant associations between the microbiome topics and plant traits as well as associations between the microbiome and the experimental factors, e.g. watering level. This yields new information on the plant-microbial interactions in maize and shows that LDA technique is useful for studying the coupling between microbiomes and stressed organisms.

References

  1. Glob Chang Biol. 2018 Jul;24(7):2818-2827 [PMID: 29505170]
  2. Evolution. 1996 Feb;50(1):92-102 [PMID: 28568873]
  3. FEMS Microbiol Ecol. 2010 Aug;73(2):197-214 [PMID: 20528987]
  4. FEMS Microbiol Ecol. 2012 Jul;81(1):111-23 [PMID: 22329626]
  5. Environ Sci Pollut Res Int. 2017 Jan;24(3):2549-2557 [PMID: 27826823]
  6. Bioinformatics. 2020 Jul 1;36(13):3959-3965 [PMID: 32311021]
  7. Ecology. 2007 Jun;88(6):1386-94 [PMID: 17601131]
  8. Science. 2016 Sep 16;353(6305):1272-7 [PMID: 27634532]
  9. Bioinformatics. 2013 Apr 15;29(8):1072-5 [PMID: 23422339]
  10. J Exp Bot. 2015 Jul;66(14):4373-81 [PMID: 25954045]
  11. Biostatistics. 2019 Oct 1;20(4):599-614 [PMID: 29868846]
  12. Sci Rep. 2019 Jan 22;9(1):249 [PMID: 30670745]
  13. Ecology. 2012 Aug;93(8):1867-79 [PMID: 22928415]
  14. New Phytol. 2013 Feb;197(3):862-872 [PMID: 23228042]
  15. Ann Appl Stat. 2020 Mar;14(1):94-115 [PMID: 32983313]
  16. Int J Mol Sci. 2019 May 08;20(9): [PMID: 31071918]
  17. Microbiome. 2020 Jun 23;8(1):95 [PMID: 32576288]
  18. Microbiome. 2021 Mar 16;9(1):61 [PMID: 33726846]
  19. ISME J. 2013 Apr;7(4):830-8 [PMID: 23235290]
  20. Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11512-9 [PMID: 18695234]
  21. ISME J. 2017 Dec;11(12):2691-2704 [PMID: 28753209]
  22. Nucleic Acids Res. 2014 Jan;42(Database issue):D643-8 [PMID: 24293649]
  23. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  24. Front Plant Sci. 2018 Jan 09;8:2223 [PMID: 29375600]
  25. mBio. 2017 Jul 18;8(4): [PMID: 28720730]
  26. Microbiome. 2017 Mar 3;5(1):27 [PMID: 28253908]
  27. FEMS Microbiol Rev. 2013 Sep;37(5):634-63 [PMID: 23790204]
  28. Sci Rep. 2019 Dec 4;9(1):18279 [PMID: 31797896]
  29. Nat Ecol Evol. 2018 Jun;2(6):936-943 [PMID: 29662222]
  30. Front Microbiol. 2016 Apr 20;7:525 [PMID: 27148214]
  31. Bioinformatics. 2010 Oct 1;26(19):2460-1 [PMID: 20709691]
  32. PLoS One. 2012;7(10):e48479 [PMID: 23119032]
  33. Front Plant Sci. 2017 Sep 19;8:1617 [PMID: 28974956]
  34. Microb Ecol. 2019 Feb;77(2):429-439 [PMID: 30196314]
  35. PLoS One. 2019 Dec 4;14(12):e0225933 [PMID: 31800619]
  36. ISME J. 2021 Jan;15(1):228-244 [PMID: 32963345]
  37. Natl Sci Rev. 2020 Dec 08;8(3):nwaa280 [PMID: 34691599]
  38. Plant Biotechnol J. 2014 Dec;12(9):1193-206 [PMID: 25431199]
  39. Sci Rep. 2023 Jul 13;13(1):11353 [PMID: 37443184]
  40. Nat Biotechnol. 2013 Sep;31(9):814-21 [PMID: 23975157]
  41. Ecology. 2009 Dec;90(12):3566-74 [PMID: 20120823]
  42. Philos Trans R Soc Lond B Biol Sci. 2020 May 11;375(1798):20190244 [PMID: 32200739]

MeSH Term

Microbiota
Microbial Interactions
Phenotype

Word Cloud

Created with Highcharts 10.0.0LDAmicrobiomemicrobiomesnewtopicsstressedorganismsmicrobialapplyLatentDirichletAllocationtechniquemodelingcommunitiesshowdatasetmaizeassociationsInteractionsenvironmentsmayprovideroutesunderstandingcontrollingbiologicalsystemsHoweverformhigh-dimensionaldatathousandstaxapresentgivensamplemakesuntanglinginteractionorganismenvironmentchallengelanguagedecomposessetnon-mutually-exclusivesub-communitiescompactlyrepresentdistributionfullprovideslensbroadfine-grainedtaxonomiclevelstwodatasetsfirstliteraturesuccinctlyrecapitulatemanyresultspreviousstudydiseasedcoralspeciessoildroughtfindlargenumbersignificantplanttraitswellexperimentalfactorsegwateringlevelyieldsinformationplant-microbialinteractionsshowsusefulstudyingcouplingenvironmental

Similar Articles

Cited By