Mechanistic inhibition of Monkeypox and Marburg virus infection by O-rhamnosides and Kaempferol-o-rhamnosides derivatives: a new-fangled computational approach.

Md Abdullah Al Mashud, Ajoy Kumer, Nobendu Mukerjee, Akhel Chandro, Swastika Maitra, Unesco Chakma, Abhijit Dey, Shopnil Akash, Athanasiosis Alexiou, Azmat Ali Khan, Amer M Alanazi, Arabinda Ghosh, Kow-Tong Chen, Rohit Sharma
Author Information
  1. Md Abdullah Al Mashud: Biophysics and Biomedicine Research Lab, Department of Electrical & Electronic Engineering, Islamic University, Kushtia, Bangladesh.
  2. Ajoy Kumer: Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, European University of Bangladesh, Dhaka, Bangladesh.
  3. Nobendu Mukerjee: Department of Microbiology, West Bengal State University, West Bengal, Kolkata, India.
  4. Akhel Chandro: Department of Poultry Science, Faculty of Animal Science & Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh.
  5. Swastika Maitra: Department of Microbiology, Adamas University, West Bengal, Kolkata, India.
  6. Unesco Chakma: Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, European University of Bangladesh, Dhaka, Bangladesh.
  7. Abhijit Dey: Department of Life Sciences, Presidency University, Kolkata, West Bengal, India.
  8. Shopnil Akash: Department of Pharmacy, Daffodil International University, Sukrabad, Dhaka, Bangladesh.
  9. Athanasiosis Alexiou: Department of Science and Engineering, Novel Global Community Educational Foundation, Habersham, NSW, Australia.
  10. Azmat Ali Khan: Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
  11. Amer M Alanazi: Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
  12. Arabinda Ghosh: Microbiology Division, Department of Botany, Gauhati University, Assam, India.
  13. Kow-Tong Chen: Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), Tainan, Taiwan.
  14. Rohit Sharma: Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.

Abstract

The increasing incidence of Monkeypox virus (Mpox) and Marburg virus (MARV) infections worldwide presents a significant challenge to global health, as limited treatment options are currently available. This study investigates the potential of several O-rhamnosides and Kaempferol-O-rhamnosides as Mpox and MARV inhibitors using molecular modeling methods, including ADMET, molecular docking, and molecular dynamics/MD simulation. The effectiveness of these compounds against the viruses was assessed using the Prediction of Activity Spectra for Substances (PASS) prediction. The study's primary focus is molecular docking prediction, which demonstrated that ligands (L07, L08, and L09) bind to Mpox (PDB ID: 4QWO) and MARV (PDB ID: 4OR8) with binding affinities ranging from -8.00 kcal/mol to -9.5 kcal/mol. HOMO-LUMO based quantum calculations were employed to determine the HOMO-LUMO gap of frontier molecular orbitals (FMOs) and to estimate chemical potential, electronegativity, hardness, and softness. Drug similarity and ADMET prediction assessments of pharmacokinetic properties revealed that the compounds were likely non-carcinogenic, non-hepatotoxic, and rapidly soluble. Molecular dynamic (MD) modeling was used to identify the most favorable docked complexes involving bioactive chemicals. MD simulations indicate that varying types of kaempferol-O-rhamnoside are necessary for successful docking validation and maintaining the stability of the docked complex. These findings could facilitate the discovery of novel therapeutic agents for treating illnesses caused by the Mpox and MARV viruses.

Keywords

References

  1. Curr Top Med Chem. 2013;13(11):1273-89 [PMID: 23675935]
  2. Int J Health Plann Manage. 2022 Jan;37(1):553-555 [PMID: 34525245]
  3. Molecules. 2022 Jun 08;27(12): [PMID: 35744817]
  4. Comput Biol Med. 2023 May;158:106797 [PMID: 36966556]
  5. Acta Crystallogr F Struct Biol Commun. 2022 Oct 1;78(Pt 10):371-377 [PMID: 36189721]
  6. J Med Virol. 2023 Jan;95(1):e28127 [PMID: 36068086]
  7. Environ Sci Pollut Res Int. 2022 Oct;29(46):69341-69366 [PMID: 35986111]
  8. Phytother Res. 2023 Jan 23;: [PMID: 36691343]
  9. Int J Surg. 2023 Jan 01;109(1):36-38 [PMID: 36799786]
  10. Pathog Glob Health. 2020 Mar;114(2):68-75 [PMID: 32202967]
  11. Methods Mol Biol. 2015;1263:243-50 [PMID: 25618350]
  12. Virulence. 2022 Dec;13(1):609-633 [PMID: 35363588]
  13. Front Cell Infect Microbiol. 2023 Feb 06;12:1088471 [PMID: 36814644]
  14. J Med Virol. 2023 Jan;95(1):e27948 [PMID: 35730397]
  15. Neurosci Lett. 2021 Nov 20;765:136172 [PMID: 34433098]
  16. Biosci Trends. 2022 Sep 17;16(4):312-316 [PMID: 35908851]
  17. J Med Chem. 2015 May 14;58(9):4066-72 [PMID: 25860834]
  18. Vet Q. 2022 Jun 7;42(1):119-124 [PMID: 35658858]
  19. Vaccine. 2021 Jan 8;39(2):202-208 [PMID: 33309082]
  20. J Travel Med. 2022 Sep 17;29(6): [PMID: 35899428]
  21. Viruses. 2015 Jun 02;7(6):2794-815 [PMID: 26043381]
  22. Virology. 1998 Jun 20;246(1):1-23 [PMID: 9656989]
  23. PLoS Negl Trop Dis. 2022 Mar 8;16(3):e0010220 [PMID: 35259154]
  24. Life (Basel). 2023 Feb 14;13(2): [PMID: 36836879]
  25. Nat Med. 2023 Jan;29(1):270-278 [PMID: 36257333]
  26. Philos Trans R Soc Lond B Biol Sci. 2017 May 26;372(1721): [PMID: 28396469]
  27. Int J Surg. 2022 Jul;103:106705 [PMID: 35697322]
  28. Ann Med Surg (Lond). 2022 Jun 07;78:103975 [PMID: 35734647]
  29. Ann Intern Med. 2022 Aug;175(8):1175-1176 [PMID: 35605243]
  30. J Biomol Struct Dyn. 2022 Feb;40(2):860-874 [PMID: 32938313]
  31. J Virol. 2014 May;88(10):5859-63 [PMID: 24574400]
  32. J Med Virol. 2023 Jan;95(1):e28229 [PMID: 36253931]
  33. Sci Rep. 2017 Mar 03;7:42717 [PMID: 28256516]
  34. PLoS Negl Trop Dis. 2019 Oct 16;13(10):e0007791 [PMID: 31618206]
  35. Bull World Health Organ. 1972;46(5):593-7 [PMID: 4340218]
  36. J Infect Dis. 2015 Oct 1;212 Suppl 2:S119-28 [PMID: 26209681]
  37. Annu Rev Food Sci Technol. 2020 Mar 25;11:365-387 [PMID: 31951485]
  38. Photodiagnosis Photodyn Ther. 2023 Mar;41:103208 [PMID: 36417972]
  39. Clin Infect Dis. 2001 Mar 1;32(5):675-85 [PMID: 11229834]
  40. Heliyon. 2021 Jul 08;7(7):e07509 [PMID: 34296013]
  41. Protein Sci. 2021 Jan;30(1):262-269 [PMID: 33179363]
  42. Emerg Infect Dis. 2017 Jun;23(6):1001-1004 [PMID: 28518032]
  43. Int J Surg. 2022 Oct;106:106923 [PMID: 36122837]
  44. Curr Comput Aided Drug Des. 2011 Jun;7(2):146-57 [PMID: 21534921]
  45. Genome Biol. 2006;7(6):110 [PMID: 16787527]
  46. Bioinformatics. 2000 Aug;16(8):747-8 [PMID: 11099264]
  47. PLoS Negl Trop Dis. 2019 Mar 18;13(3):e0007257 [PMID: 30883555]
  48. Viruses. 2023 Feb 19;15(2): [PMID: 36851785]
  49. Int J Surg. 2023 Feb 01;109(2):165-166 [PMID: 36799839]
  50. Science. 2000 Nov 3;290(5493):923-5 [PMID: 11184732]
  51. Int J Surg. 2022 Aug;104:106812 [PMID: 35944803]
  52. Trop Med Int Health. 2022 Jul;27(7):604-605 [PMID: 35633308]
  53. J Infect Dis. 2011 Nov;204 Suppl 3:S796-9 [PMID: 21987753]
  54. Travel Med Infect Dis. 2022 Sep-Oct;49:102362 [PMID: 35643256]
  55. Int J Surg. 2022 Sep;105:106847 [PMID: 35995352]
  56. Angew Chem Int Ed Engl. 2005 Aug 26;44(34):5370-3 [PMID: 16034992]
  57. Int J Infect Dis. 2020 Oct;99:233-242 [PMID: 32758690]

MeSH Term

Humans
Kaempferols
Marburgvirus
Mpox (monkeypox)
Molecular Docking Simulation
Molecular Dynamics Simulation
Virus Diseases

Chemicals

Kaempferols

Word Cloud

Created with Highcharts 10.0.0molecularvirusMpoxMARVdockingMonkeypoxMarburgO-rhamnosidespredictionpotentialusingmodelingADMETcompoundsvirusesPDBID:kcal/molHOMO-LUMOMDdockedsimulationsKaempferol-o-rhamnosidesincreasingincidenceinfectionsworldwidepresentssignificantchallengeglobalhealthlimitedtreatmentoptionscurrentlyavailablestudyinvestigatesseveralKaempferol-O-rhamnosidesinhibitorsmethodsincludingdynamics/MDsimulationeffectivenessassessedPredictionActivitySpectraSubstancesPASSstudy'sprimaryfocusdemonstratedligandsL07L08L09bind4QWO4OR8bindingaffinitiesranging-800-95basedquantumcalculationsemployeddeterminegapfrontierorbitalsFMOsestimatechemicalelectronegativityhardnesssoftnessDrugsimilarityassessmentspharmacokineticpropertiesrevealedlikelynon-carcinogenicnon-hepatotoxicrapidlysolubleMoleculardynamicusedidentifyfavorablecomplexesinvolvingbioactivechemicalsindicatevaryingtypeskaempferol-O-rhamnosidenecessarysuccessfulvalidationmaintainingstabilitycomplexfindingsfacilitatediscoverynoveltherapeuticagentstreatingillnessescausedMechanisticinhibitioninfectionderivatives:new-fangledcomputationalapproachadmetdrugdevelopmentdynamics

Similar Articles

Cited By