MicroRNA-223 limits murine hemogenic endothelial cell specification and myelopoiesis.

Yinyu Wu, Umadevi Paila, Gael Genet, Karen K Hirschi
Author Information
  1. Yinyu Wu: Departments of Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.
  2. Umadevi Paila: Department of Cell Biology, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.
  3. Gael Genet: Department of Cell Biology, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.
  4. Karen K Hirschi: Departments of Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA. Electronic address: kkh4yy@virginia.edu.

Abstract

Embryonic definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs) that are essential for the establishment and maintenance of the adult blood system. This process requires the specification of a subset of vascular endothelial cells (ECs) to become hemogenic ECs and to have subsequent endothelial-to-hematopoietic transition (EHT), and the underlying mechanisms are largely undefined. We identified microRNA (miR)-223 as a negative regulator of murine hemogenic EC specification and EHT. Loss of miR-223 leads to increased formation of hemogenic ECs and HSPCs, which is associated with increased retinoic acid signaling, which we previously showed as promoting hemogenic EC specification. Additionally, loss of miR-223 leads to the generation of myeloid-biased hemogenic ECs and HSPCs, which results in an increased proportion of myeloid cells throughout embryonic and postnatal life. Our findings identify a negative regulator of hemogenic EC specification and highlight the importance of this process for the establishment of the adult blood system.

Keywords

References

  1. Cell. 2013 Sep 26;155(1):215-27 [PMID: 24074870]
  2. Genome Biol. 2020 Jul 1;21(1):157 [PMID: 32611441]
  3. Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5465-70 [PMID: 20304793]
  4. Blood. 2008 Oct 15;112(8):3194-204 [PMID: 18684862]
  5. Cell Immunol. 2018 Aug;330:5-15 [PMID: 29475558]
  6. Cancer Cell. 2011 Aug 16;20(2):246-59 [PMID: 21840488]
  7. Development. 2018 Jan 29;145(2): [PMID: 29361566]
  8. Blood. 2009 Jun 18;113(25):6342-50 [PMID: 19377048]
  9. J Immunol. 2013 Feb 15;190(4):1576-82 [PMID: 23325891]
  10. Cell Rep. 2014 Oct 23;9(2):581-90 [PMID: 25310984]
  11. J Lipid Res. 2002 Nov;43(11):1773-808 [PMID: 12401878]
  12. Cell Stem Cell. 2010 Mar 5;6(3):265-78 [PMID: 20207229]
  13. Annu Rev Physiol. 2021 Feb 10;83:17-37 [PMID: 33035429]
  14. Dev Cell. 2017 Mar 27;40(6):552-565.e5 [PMID: 28350988]
  15. J Vis Exp. 2016 Jun 17;(112): [PMID: 27341393]
  16. Cell. 2005 Dec 2;123(5):819-31 [PMID: 16325577]
  17. Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20012-7 [PMID: 22123971]
  18. Immunity. 1996 Dec;5(6):513-25 [PMID: 8986712]
  19. Front Immunol. 2018 Jun 11;9:1264 [PMID: 29942304]
  20. Science. 2000 May 26;288(5470):1439-41 [PMID: 10827957]
  21. Blood Cells Mol Dis. 2013 Dec;51(4):220-5 [PMID: 24095199]
  22. Genome Biol. 2019 Dec 23;20(1):296 [PMID: 31870423]
  23. Nat Biotechnol. 2019 Dec;37(12):1482-1492 [PMID: 31796933]
  24. Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15535-40 [PMID: 18832181]
  25. Front Cell Dev Biol. 2021 Jan 08;8:617879 [PMID: 33490082]
  26. Dev Cell. 2013 Dec 9;27(5):504-15 [PMID: 24331925]
  27. PLoS One. 2011 Jan 19;6(1):e15810 [PMID: 21283524]
  28. Front Cell Dev Biol. 2021 Jul 29;9:648630 [PMID: 34395414]
  29. Curr Protoc. 2021 Mar;1(3):e90 [PMID: 33780170]
  30. Oncogene. 2007 Jun 14;26(28):4148-57 [PMID: 17260024]
  31. Blood. 2015 Feb 26;125(9):1418-26 [PMID: 25587036]
  32. Wiley Interdiscip Rev Dev Biol. 2018 May;7(3):e312 [PMID: 29436122]
  33. Nature. 2008 Feb 28;451(7182):1125-9 [PMID: 18278031]
  34. Int J Mol Sci. 2016 Nov 08;17(11): [PMID: 27834806]
  35. BMC Immunol. 2014 Mar 31;15:14 [PMID: 24678908]
  36. Exp Hematol. 2018 Dec;68:2-9 [PMID: 30391350]
  37. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  38. Science. 2019 Dec 20;366(6472): [PMID: 31806698]
  39. Science. 2020 Dec 4;370(6521):1186-1191 [PMID: 33273096]
  40. Dev Cell. 2016 Aug 22;38(4):358-70 [PMID: 27499523]
  41. Leukemia. 2015 Aug;29(8):1741-53 [PMID: 25778099]
  42. Angiogenesis. 2021 May;24(2):199-211 [PMID: 33783643]
  43. Oncogene. 2004 Sep 20;23(43):7178-87 [PMID: 15378078]
  44. Nat Commun. 2015 Oct 14;6:8510 [PMID: 26465397]
  45. Blood. 2008 Jun 15;111(12):5553-61 [PMID: 18413859]
  46. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  47. Genes Dev. 1991 Aug;5(8):1333-44 [PMID: 1907940]
  48. J Exp Med. 2004 Jan 5;199(1):5-14 [PMID: 14707111]
  49. Nat Immunol. 2016 Jan;17(1):2-8 [PMID: 26681456]
  50. Immunity. 2015 Apr 21;42(4):665-78 [PMID: 25902481]

Grants

  1. R01 DK118728/NIDDK NIH HHS
  2. R01 HL146056/NHLBI NIH HHS
  3. UH2 EB017103/NIBIB NIH HHS

MeSH Term

Mice
Animals
Hemangioblasts
Myelopoiesis
Hematopoietic Stem Cells
Hematopoiesis
Cell Differentiation
MicroRNAs

Chemicals

MicroRNAs
MIRN223 microRNA, mouse

Word Cloud

Created with Highcharts 10.0.0hemogeniccellsspecificationECsHSPCsendothelialECincreasedhematopoiesishematopoieticstemestablishmentadultbloodsystemprocessEHTnegativeregulatormurinemiR-223leadsretinoicacidsignalingMicroRNA-223myelopoiesisEmbryonicdefinitivegeneratesprogenitoressentialmaintenancerequiressubsetvascularbecomesubsequentendothelial-to-hematopoietictransitionunderlyingmechanismslargelyundefinedidentifiedmicroRNAmiR-223LossformationassociatedpreviouslyshowedpromotingAdditionallylossgenerationmyeloid-biasedresultsproportionmyeloidthroughoutembryonicpostnatallifefindingsidentifyhighlightimportancelimitscell

Similar Articles

Cited By