Untargeted Lipidomics and Chemometric Tools for the Characterization and Discrimination of Irradiated Camembert Cheese Analyzed by UHPLC-Q-Orbitrap-MS.

Michele Tomaiuolo, Valeria Nardelli, Annalisa Mentana, Maria Campaniello, Rosalia Zianni, Marco Iammarino
Author Information
  1. Michele Tomaiuolo: Laboratorio Nazionale di Riferimento per il Trattamento degli Alimenti e dei loro Ingredienti con Radiazioni Ionizzanti, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20-71121 Foggia, Italy.
  2. Valeria Nardelli: Laboratorio Nazionale di Riferimento per il Trattamento degli Alimenti e dei loro Ingredienti con Radiazioni Ionizzanti, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20-71121 Foggia, Italy.
  3. Annalisa Mentana: Laboratorio Nazionale di Riferimento per il Trattamento degli Alimenti e dei loro Ingredienti con Radiazioni Ionizzanti, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20-71121 Foggia, Italy. ORCID
  4. Maria Campaniello: Laboratorio Nazionale di Riferimento per il Trattamento degli Alimenti e dei loro Ingredienti con Radiazioni Ionizzanti, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20-71121 Foggia, Italy.
  5. Rosalia Zianni: Laboratorio Nazionale di Riferimento per il Trattamento degli Alimenti e dei loro Ingredienti con Radiazioni Ionizzanti, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20-71121 Foggia, Italy.
  6. Marco Iammarino: Laboratorio Nazionale di Riferimento per il Trattamento degli Alimenti e dei loro Ingredienti con Radiazioni Ionizzanti, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20-71121 Foggia, Italy. ORCID

Abstract

In this work, an investigation using UHPLC-Q-Orbitrap-MS and multivariate statistics was conducted to obtain the lipid fingerprint of Camembert cheese and to explore its correlated variation with respect to X-ray irradiation treatment. A total of 479 lipids, categorized into 16 different lipid subclasses, were measured. Furthermore, the identification of oxidized lipids was carried out to better understand the possible phenomena of lipid oxidation related to this technological process. The results confirm that the lipidomic approach adopted is effective in implementing the knowledge of the effects of X-ray irradiation on food and evaluating its safety aspects. Furthermore, Partial Least Squares-Discriminant Analysis (PLS-DA) and Linear Discriminant Analysis (LDA) were applied showing high discriminating ability with excellent values of accuracy, specificity and sensitivity. Through the PLS-DA and LDA models, it was possible to select 40 and 24 lipids, respectively, including 3 ceramides (Cer), 1 hexosyl ceramide (HexCer), 1 lysophosphatidylcholine (LPC), 1 lysophosphatidylethanolamine (LPE), 3 phosphatidic acids (PA), 4 phosphatidylcholines (PC), 10 phosphatidylethanolamines (PE), 5 phosphatidylinositols (PI), 2 phosphatidylserines (PS), 3 diacylglycerols (DG) and 9 oxidized triacylglycerols (OxTG) as potential markers of treatment useful in food safety control plans.

Keywords

References

  1. Metabolomics. 2018;14(6):72 [PMID: 29805336]
  2. Int Microbiol. 2015 Mar;18(1):33-40 [PMID: 26415665]
  3. Biochim Biophys Acta. 2012 Oct;1818(10):2374-87 [PMID: 22342938]
  4. Food Chem. 2023 Oct 15;423:136239 [PMID: 37182488]
  5. J Pharm Biomed Anal. 2020 Jan 5;177:112849 [PMID: 31499429]
  6. J Biol Chem. 1957 May;226(1):497-509 [PMID: 13428781]
  7. Antioxidants (Basel). 2019 Sep 25;8(10): [PMID: 31557858]
  8. Compr Rev Food Sci Food Saf. 2017 Nov;16(6):1206-1218 [PMID: 33371591]
  9. Anal Chem. 2016 Jan 5;88(1):524-45 [PMID: 26637011]
  10. J Dairy Sci. 2019 Jan;102(1):164-176 [PMID: 30391175]
  11. Int J Food Microbiol. 2016 Oct 3;234:71-75 [PMID: 27382958]
  12. Food Chem. 2022 Nov 15;394:133542 [PMID: 35759836]
  13. Metabolomics. 2017 Mar;13(3): [PMID: 28496395]
  14. Chem Phys Lipids. 2020 Jan;226:104786 [PMID: 31229410]
  15. Food Chem. 2022 May 1;375:131700 [PMID: 34895943]
  16. Food Res Int. 2022 Jun;156:111118 [PMID: 35651000]
  17. Anal Bioanal Chem. 2018 Sep;410(23):5981-5992 [PMID: 29959482]
  18. J Agric Food Chem. 2020 Jun 17;68(24):6726-6738 [PMID: 32369354]
  19. Adv Drug Deliv Rev. 2020;159:294-307 [PMID: 32553782]
  20. Food Chem. 2022 Jul 30;383:132437 [PMID: 35182863]
  21. Anal Chim Acta. 2015 Jul 23;885:1-16 [PMID: 26231889]
  22. Anal Chim Acta. 2007 Jun 5;592(2):210-7 [PMID: 17512828]
  23. Metabolomics. 2012 Jun;8(Suppl 1):3-16 [PMID: 22593721]
  24. J Pharm Biomed Anal. 2018 Jan 5;147:149-173 [PMID: 28823764]

Grants

  1. GR-2018-12367064/Italian Ministry of Health

Word Cloud

Created with Highcharts 10.0.0UHPLC-Q-Orbitrap-MSlipidCamembertirradiationlipidsfood31cheeseX-raytreatmentFurthermoreoxidizedpossiblesafetyAnalysisPLS-DALDAworkinvestigationusingmultivariatestatisticsconductedobtainfingerprintexplorecorrelatedvariationrespecttotal479categorized16differentsubclassesmeasuredidentificationcarriedbetterunderstandphenomenaoxidationrelatedtechnologicalprocessresultsconfirmlipidomicapproachadoptedeffectiveimplementingknowledgeeffectsevaluatingaspectsPartialLeastSquares-DiscriminantLinearDiscriminantappliedshowinghighdiscriminatingabilityexcellentvaluesaccuracyspecificitysensitivitymodelsselect4024respectivelyincludingceramidesCerhexosylceramideHexCerlysophosphatidylcholineLPClysophosphatidylethanolamineLPEphosphatidicacidsPA4phosphatidylcholinesPC10phosphatidylethanolaminesPE5phosphatidylinositolsPI2phosphatidylserinesPSdiacylglycerolsDG9triacylglycerolsOxTGpotentialmarkersusefulcontrolplansUntargetedLipidomicsChemometricToolsCharacterizationDiscriminationIrradiatedCheeseAnalyzedchemometricanalysislipidomics

Similar Articles

Cited By