Longitudinal Studies of Wearables in Patients with Diabetes: Key Issues and Solutions.

Ahmad Yaser Alhaddad, Hussein Aly, Hoda Gad, Einas Elgassim, Ibrahim Mohammed, Khaled Baagar, Abdulaziz Al-Ali, Kishor Kumar Sadasivuni, John-John Cabibihan, Rayaz A Malik
Author Information
  1. Ahmad Yaser Alhaddad: Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar. ORCID
  2. Hussein Aly: KINDI Center for Computing Research, Qatar University, Doha 2713, Qatar. ORCID
  3. Hoda Gad: Weill Cornell Medicine-Qatar, Doha 24144, Qatar.
  4. Einas Elgassim: Weill Cornell Medicine-Qatar, Doha 24144, Qatar.
  5. Ibrahim Mohammed: Weill Cornell Medicine-Qatar, Doha 24144, Qatar.
  6. Khaled Baagar: Hamad Medical Corporation, Doha 3050, Qatar.
  7. Abdulaziz Al-Ali: KINDI Center for Computing Research, Qatar University, Doha 2713, Qatar. ORCID
  8. Kishor Kumar Sadasivuni: Center for Advanced Materials, Qatar University, Doha 2713, Qatar. ORCID
  9. John-John Cabibihan: Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar. ORCID
  10. Rayaz A Malik: Weill Cornell Medicine-Qatar, Doha 24144, Qatar. ORCID

Abstract

Glucose monitoring is key to the management of diabetes mellitus to maintain optimal glucose control whilst avoiding hypoglycemia. Non-invasive continuous glucose monitoring techniques have evolved considerably to replace finger prick testing, but still require sensor insertion. Physiological variables, such as heart rate and pulse pressure, change with blood glucose, especially during hypoglycemia, and could be used to predict hypoglycemia. To validate this approach, clinical studies that contemporaneously acquire physiological and continuous glucose variables are required. In this work, we provide insights from a clinical study undertaken to study the relationship between physiological variables obtained from a number of wearables and glucose levels. The clinical study included three screening tests to assess neuropathy and acquired data using wearable devices from 60 participants for four days. We highlight the challenges and provide recommendations to mitigate issues that may impact the validity of data capture to enable a valid interpretation of the outcomes.

Keywords

References

  1. J Diabetes Sci Technol. 2008 Sep;2(5):919-21 [PMID: 19885279]
  2. Control Clin Trials. 2001 Oct;22(5):515-25 [PMID: 11578785]
  3. PLoS Med. 2016 Feb 02;13(2):e1001953 [PMID: 26836780]
  4. J Diabetes Complications. 2018 Nov;32(11):975-981 [PMID: 29937138]
  5. Diabetes Metab Res Rev. 2021 Oct;37(7):e3449 [PMID: 33763974]
  6. Yale J Biol Med. 2013 Sep 20;86(3):343-58 [PMID: 24058309]
  7. Eval Rev. 2002 Oct;26(5):443-79 [PMID: 12243104]
  8. Brain Behav. 2022 Jul;12(7):e2633 [PMID: 35620854]
  9. JAMA. 2007 Mar 21;297(11):1233-40 [PMID: 17374817]
  10. J Med Syst. 2021 Dec 24;46(1):11 [PMID: 34951684]
  11. PLoS One. 2013 Oct 22;8(10):e76585 [PMID: 24167546]
  12. J Diabetes Investig. 2020 Nov;11(6):1594-1601 [PMID: 32491258]
  13. J Diabetes Sci Technol. 2014 Jan 1;8(1):64-69 [PMID: 24876539]
  14. Diabetes Care. 2020 Oct;43(10):2411-2417 [PMID: 32647050]
  15. J Diabetes Complications. 2022 Mar;36(3):108106 [PMID: 35131155]
  16. Diabetes Care. 2021 Jan;44(Suppl 1):S111-S124 [PMID: 33298420]
  17. Front Bioeng Biotechnol. 2022 May 12;10:876672 [PMID: 35646863]
  18. Per Med. 2018 Sep;15(5):429-448 [PMID: 30259801]
  19. Sensors (Basel). 2022 Mar 05;22(5): [PMID: 35271177]
  20. Endocr Connect. 2022 Nov 14;11(12): [PMID: 36240043]
  21. Comput Methods Programs Biomed. 2018 Jan;153:137-159 [PMID: 29157447]
  22. J Diabetes Investig. 2022 Jan;13(1):134-147 [PMID: 34351711]
  23. IEEE Trans Biomed Eng. 2019 May;66(5):1242-1258 [PMID: 31021744]
  24. Physiol Meas. 2017 May;38(5):787-799 [PMID: 28151434]
  25. J Clin Nurs. 2010 Jan;19(1-2):227-33 [PMID: 20500260]
  26. Lancet. 2017 Jun 3;389(10085):2239-2251 [PMID: 28190580]
  27. Diabetes Care. 2021 Jan;44(Suppl 1):S73-S84 [PMID: 33298417]
  28. Sensors (Basel). 2017 Mar 07;17(3): [PMID: 28272362]
  29. J Diabetes Sci Technol. 2016 Aug 22;10(5):1169-73 [PMID: 26880390]
  30. Behav Res Methods. 2021 Aug;53(4):1689-1696 [PMID: 33528817]
  31. Diabetes Technol Ther. 2019 Jul;21(7):406-408 [PMID: 31265348]
  32. Am J Geriatr Psychiatry. 2001 Spring;9(2):136-40 [PMID: 11316617]
  33. Biosensors (Basel). 2022 Jan 27;12(2): [PMID: 35200334]
  34. Diabetes Technol Ther. 2013 Nov;15(11):948-53 [PMID: 23889506]
  35. BMC Med Res Methodol. 2014 Jan 23;14:10 [PMID: 24456229]
  36. Health Serv Res. 2006 Feb;41(1):214-30 [PMID: 16430608]
  37. Biosensors (Basel). 2021 Oct 04;11(10): [PMID: 34677328]
  38. Front Physiol. 2018 Jun 14;9:727 [PMID: 29962962]
  39. Clin Pharmacol Ther. 2018 Jul;104(1):42-52 [PMID: 29205294]
  40. Am J Health Syst Pharm. 2009 Jan 15;66(2):176-84 [PMID: 19139484]
  41. J Biomed Inform. 2010 Jun;43(3):451-67 [PMID: 20034594]
  42. Diabetes Obes Metab. 2021 Jun;23(6):1292-1300 [PMID: 33539672]
  43. Diabetes Care. 2019 Apr;42(4):689-692 [PMID: 30877089]

Grants

  1. 11S-0110-180247/Qatar National Research Fund

MeSH Term

Humans
Blood Glucose Self-Monitoring
Diabetes Mellitus, Type 1
Blood Glucose
Hypoglycemia
Longitudinal Studies
Wearable Electronic Devices

Chemicals

Blood Glucose

Word Cloud

Created with Highcharts 10.0.0glucosemonitoringhypoglycemiacontinuousvariablesclinicalstudydatamanagementdiabetesbloodphysiologicalprovidewearabledevicesGlucosekeymellitusmaintainoptimalcontrolwhilstavoidingNon-invasivetechniquesevolvedconsiderablyreplacefingerpricktestingstillrequiresensorinsertionPhysiologicalheartratepulsepressurechangeespeciallyusedpredictvalidateapproachstudiescontemporaneouslyacquirerequiredworkinsightsundertakenrelationshipobtainednumberwearableslevelsincludedthreescreeningtestsassessneuropathyacquiredusing60participantsfourdayshighlightchallengesrecommendationsmitigateissuesmayimpactvaliditycaptureenablevalidinterpretationoutcomesLongitudinalStudiesWearablesPatientsDiabetes:KeyIssuesSolutionscollectionlongitudinalmachinelearning

Similar Articles

Cited By