Strain FBG-Based Sensor for Detecting Fence Intruders Using Machine Learning and Adaptive Thresholding.

Ahmad Elleathy, Faris Alhumaidan, Mohammed Alqahtani, Ahmed S Almaiman, Amr M Ragheb, Ahmed B Ibrahim, Jameel Ali, Maged A Esmail, Saleh A Alshebeili
Author Information
  1. Ahmad Elleathy: Electrical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia.
  2. Faris Alhumaidan: Electrical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia.
  3. Mohammed Alqahtani: Electrical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia.
  4. Ahmed S Almaiman: Electrical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia. ORCID
  5. Amr M Ragheb: Electrical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia. ORCID
  6. Ahmed B Ibrahim: KACST-TIC in Radio Frequency and Photonics (RFTONICS), King Saud University, Riyadh 11421, Saudi Arabia. ORCID
  7. Jameel Ali: Electrical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia. ORCID
  8. Maged A Esmail: Smart Systems Engineering Laboratory, Communications and Networks Engineering Department, Faculty of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia. ORCID
  9. Saleh A Alshebeili: Electrical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia. ORCID

Abstract

This paper demonstrates an intruder detection system using a strain-based optical fiber Bragg grating (FBG), machine learning (ML), and adaptive thresholding to classify the intruder as no intruder, intruder, or wind at low levels of signal-to-noise ratio. We demonstrate the intruder detection system using a portion of a real fence manufactured and installed around one of the engineering college's gardens at King Saud University. The experimental results show that adaptive thresholding can help improve the performance of machine learning classifiers, such as linear discriminant analysis (LDA) or logistic regression algorithms in identifying an intruder's existence at low optical signal-to-noise ratio (OSNR) scenarios. The proposed method can achieve an average accuracy of 99.17% when the OSNR level is <0.5 dB.

Keywords

References

  1. Appl Opt. 2022 Apr 10;61(11):2975-2997 [PMID: 35471272]
  2. Opt Express. 2021 Mar 15;29(6):8592-8605 [PMID: 33820303]
  3. Sensors (Basel). 2017 Oct 17;17(10): [PMID: 29039804]
  4. Sensors (Basel). 2018 Sep 15;18(9): [PMID: 30223567]
  5. IEEE Trans Affect Comput. 2023 Oct-Dec;14(4):3388-3395 [PMID: 38107015]
  6. Sensors (Basel). 2022 Oct 05;22(19): [PMID: 36236653]
  7. Biostatistics. 2007 Jan;8(1):86-100 [PMID: 16603682]
  8. Seizure. 2023 Apr;107:155-161 [PMID: 37068328]
  9. Sensors (Basel). 2011;11(4):3466-82 [PMID: 22163806]

Grants

  1. 3-17-09-001-0012/National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia.

Word Cloud

Created with Highcharts 10.0.0intruderopticalmachinelearningadaptivethresholdingdetectionsystemusingfiberBragggratinglowsignal-to-noiseratiocanlineardiscriminantanalysislogisticregressionOSNRpaperdemonstratesstrain-basedFBGMLclassifywindlevelsdemonstrateportionrealfencemanufacturedinstalledaroundoneengineeringcollege'sgardensKingSaudUniversityexperimentalresultsshowhelpimproveperformanceclassifiersLDAalgorithmsidentifyingintruder'sexistencescenariosproposedmethodachieveaverageaccuracy9917%level<05dBStrainFBG-BasedSensorDetectingFenceIntrudersUsingMachineLearningAdaptiveThresholdingsensing

Similar Articles

Cited By