A multivariate spatio-temporal model for the incidence of imported COVID-19 cases and COVID-19 deaths in Cuba.

Dries De Witte, Ariel Alonso Abad, Geert Molenberghs, Geert Verbeke, Lizet Sanchez, Pedro Mas-Bermejo, Thomas Neyens
Author Information
  1. Dries De Witte: L-BioStat, KU Leuven, Leuven, 3000, Belgium. Electronic address: dries.dewitte@kuleuven.be.
  2. Ariel Alonso Abad: L-BioStat, KU Leuven, Leuven, 3000, Belgium; I-BioStat, Hasselt University, Diepenbeek, 3590, Belgium.
  3. Geert Molenberghs: L-BioStat, KU Leuven, Leuven, 3000, Belgium; I-BioStat, Hasselt University, Diepenbeek, 3590, Belgium.
  4. Geert Verbeke: L-BioStat, KU Leuven, Leuven, 3000, Belgium; I-BioStat, Hasselt University, Diepenbeek, 3590, Belgium.
  5. Lizet Sanchez: Cuban National Group of Epidemiology and Modeling of the COVID-19 Pandemic, Center of Molecular Immunology, Havana, 11 600, Cuba.
  6. Pedro Mas-Bermejo: Cuban National Group of Epidemiology and Modeling of the COVID-19 Pandemic, Institute "Pedro Kouri", Havana, 11 600, Cuba.
  7. Thomas Neyens: L-BioStat, KU Leuven, Leuven, 3000, Belgium; I-BioStat, Hasselt University, Diepenbeek, 3590, Belgium.

Abstract

To monitor the COVID-19 epidemic in Cuba, data on several epidemiological indicators have been collected on a daily basis for each municipality. Studying the spatio-temporal dynamics in these indicators, and how they behave similarly, can help us better understand how COVID-19 spread across Cuba. Therefore, spatio-temporal models can be used to analyze these indicators. Univariate spatio-temporal models have been thoroughly studied, but when interest lies in studying the association between multiple outcomes, a joint model that allows for association between the spatial and temporal patterns is necessary. The purpose of our study was to develop a multivariate spatio-temporal model to study the association between the weekly number of COVID-19 deaths and the weekly number of imported COVID-19 cases in Cuba during 2021. To allow for correlation between the spatial patterns, a multivariate conditional autoregressive prior (MCAR) was used. Correlation between the temporal patterns was taken into account by using two approaches; either a multivariate random walk prior was used or a multivariate conditional autoregressive prior (MCAR) was used. All models were fitted within a Bayesian framework.

Keywords

References

  1. Environmetrics. 2017 Dec;28(8): [PMID: 29230091]
  2. Biostatistics. 2021 Dec 27;: [PMID: 34958093]
  3. Rev Panam Salud Publica. 2021 Jul 01;45:e80 [PMID: 34220992]
  4. J Clin Virol Plus. 2022 Nov;2(4):100104 [PMID: 36034515]
  5. Lancet Reg Health Am. 2022 Dec;16:100366 [PMID: 36185968]
  6. Spat Stat. 2022 Jun;49:100519 [PMID: 33996424]
  7. Biostatistics. 2003 Jan;4(1):11-25 [PMID: 12925327]
  8. Nat Hum Behav. 2021 Apr;5(4):529-538 [PMID: 33686204]
  9. Stat Med. 2000 Sep 15-30;19(17-18):2555-67 [PMID: 10960871]
  10. Biometrics. 2005 Dec;61(4):950-61 [PMID: 16401268]
  11. MEDICC Rev. 2020 Oct;22(4):29-34 [PMID: 33295317]
  12. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  13. J R Stat Soc Series B Stat Methodol. 2007 Nov 1;69(5):817-838 [PMID: 20981244]
  14. Spat Stat. 2022 Jun;49:100508 [PMID: 33868908]

MeSH Term

Humans
COVID-19
Spatio-Temporal Analysis
Incidence
Bayes Theorem
Cuba

Word Cloud

Created with Highcharts 10.0.0COVID-19spatio-temporalmultivariateCubamodelsusedindicatorsassociationmodelpatternspriorcanspatialtemporalstudyweeklynumberdeathsimportedcasesconditionalautoregressiveMCARBayesianmonitorepidemicdataseveralepidemiologicalcollecteddailybasismunicipalityStudyingdynamicsbehavesimilarlyhelpusbetterunderstandspreadacrossThereforeanalyzeUnivariatethoroughlystudiedinterestliesstudyingmultipleoutcomesjointallowsnecessarypurposedevelop2021allowcorrelationCorrelationtakenaccountusingtwoapproacheseitherrandomwalkfittedwithinframeworkincidenceinferenceJointMultivariatemodeling

Similar Articles

Cited By (1)