Are at-risk sociodemographic attributes stable across COVID-19 transmission waves?

Amanda Norton, Scarlett Rakowska, Tracey Galloway, Kathleen Wilson, Laura Rosella, Matthew Adams
Author Information
  1. Amanda Norton: Department of Geography, Geomatics & Environment, University of Toronto Mississauga, DV3284, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
  2. Scarlett Rakowska: Department of Geography, Geomatics & Environment, University of Toronto Mississauga, DV3284, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
  3. Tracey Galloway: Department of Anthropology, University of Toronto Mississauga, HSC354, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
  4. Kathleen Wilson: Department of Geography, Geomatics & Environment, University of Toronto Mississauga, DV3284, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
  5. Laura Rosella: Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, 155 College St, Health Sciences Bldg., 6th floor, Toronto, ON M5T 3M7, Canada.
  6. Matthew Adams: Department of Geography, Geomatics & Environment, University of Toronto Mississauga, DV3284, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada. Electronic address: md.adams@utoronto.ca.

Abstract

COVID-19 health impacts and risks have been disproportionate across social, economic, and racial gradients (Chen et al., 2021; Thompson et al., 2021; Mamuji et al., 2021; COVID-19 and Ethnicity, 2020). By examining the first five waves of the pandemic in Ontario, we identify if Forward Sortation Area (FSAs)based measures of sociodemographic status and their relationship to COVID-19 cases are stable or vary by time. COVID-19 waves were defined using a time-series graph of COVID-19 case counts by epi-week. Percent Black visible minority, percent Southeast Asian visible minority and percent Chinese visible minority at the FSA level were then integrated into spatial error models with other established vulnerability characteristics. The models indicate that area-based sociodemographic patterns associated with COVID-19 infection change over time. If sociodemographic characteristics are identified as high risk (increased COVID-19 case rates) increased testing, public health messaging, and other preventative care may be implemented to protect populations from the inequitable burden of disease.

Keywords

References

  1. J Infect. 2020 Sep;81(3):420-426 [PMID: 32504745]
  2. PLoS One. 2021 Apr 20;16(4):e0250149 [PMID: 33878136]
  3. Nonlinear Dyn. 2020;101(3):1833-1846 [PMID: 32836819]
  4. Glob Epidemiol. 2021 Nov;3:100058 [PMID: 34368752]
  5. Lancet. 2020 May 30;395(10238):1673-1676 [PMID: 32401716]
  6. J Travel Med. 2020 May 18;27(3): [PMID: 32227186]
  7. J Public Health (Oxf). 2020 Aug 18;42(3):445-447 [PMID: 32435809]
  8. Can Rev Sociol. 2021 May;58(2):146-164 [PMID: 33942533]
  9. Soc Sci Humanit Open. 2021;4(1):100232 [PMID: 34841246]
  10. One Health. 2021 Dec;13:100303 [PMID: 34423107]
  11. Sci Am. 2022 May 1;326(5):58 [PMID: 39016734]
  12. Biom J. 2018 May;60(3):431-449 [PMID: 29292533]
  13. Spat Stat. 2022 Jun;49:100508 [PMID: 33868908]
  14. Spat Stat. 2022 Jun;49:100518 [PMID: 34026473]
  15. J Epidemiol Community Health. 2022 Jan;76(1):1-7 [PMID: 34158409]
  16. Can Commun Dis Rep. 2021 Jul 08;47(7-8):300-304 [PMID: 34421385]
  17. Ann Epidemiol. 2022 Jan;65:84-92 [PMID: 34320380]
  18. South Med J. 2022 May;115(5):340-346 [PMID: 35504617]
  19. Int J Environ Res Public Health. 2021 Feb 25;18(5): [PMID: 33668958]
  20. BMC Public Health. 2022 May 29;22(1):1067 [PMID: 35643450]
  21. Infect Control Hosp Epidemiol. 2021 Dec;42(12):1473-1478 [PMID: 33504372]
  22. JAMA. 2021 Sep 28;326(12):1145-1146 [PMID: 34424275]
  23. Stat J IAOS. 2015;31(1):67-87 [PMID: 26793283]
  24. J Infect Dis. 2020 Oct 13;222(10):1592-1595 [PMID: 32729903]
  25. Ageing Res Rev. 2021 Jan;65:101205 [PMID: 33137510]
  26. J Rural Health. 2020 Sep;36(4):591-601 [PMID: 32602983]

Grants

  1. 179444/CIHR

MeSH Term

Humans
COVID-19
Ethnicity
Racial Groups
Ontario

Word Cloud

Created with Highcharts 10.0.0COVID-19sociodemographicet al2021visibleminorityhealthacrosswavesstabletimecasepercentmodelscharacteristicsincreasedattributesimpactsrisksdisproportionatesocialeconomicracialgradientsChenThompsonMamujiEthnicity2020examiningfirstfivepandemicOntarioidentifyForwardSortationAreaFSAsbasedmeasuresstatusrelationshipcasesvarydefinedusingtime-seriesgraphcountsepi-weekPercentBlackSoutheastAsianChineseFSAlevelintegratedspatialerrorestablishedvulnerabilityindicatearea-basedpatternsassociatedinfectionchangeidentifiedhighriskratestestingpublicmessagingpreventativecaremayimplementedprotectpopulationsinequitableburdendiseaseat-risktransmissionwaves?COVID-19SociodemographicSpatio-temporalanalysis

Similar Articles

Cited By