Molecular approaches for improving oil palm for oil.

Gen Hua Yue, Bao Qing Ye, May Lee
Author Information
  1. Gen Hua Yue: Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore. ORCID
  2. Bao Qing Ye: Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore.
  3. May Lee: Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore.

Abstract

The oil palm, originating from Africa, is the most productive oil crop species. Palm oil is an important source of edible oil. Its current global plantation area is over 23 million ha. The theoretical oil yield potential of the oil palm is 18.2 tons/ha/year. However, current average oil yield is only 3.8 tons/ha/year. In the past 100 years, conventional breeding and improvement of field management played important roles in increasing oil yield. However, conventional breeding for trait improvement was limited by its very long (10-20 years) phenotypic selection cycle, although it improved oil yield by ~10-20% per generation. Molecular breeding using novel molecular technologies will accelerate genetic improvement and may reduce the need to deforest and to use arable land for expanding oil palm plantations, which in turn makes palm oil more sustainable. Here, we comprehensively synthesize information from relevant literature of the technologies, achievements, and challenges of molecular approaches, including tissue culture, haploid breeding, mutation breeding, marker-assisted selection (MAS), genomic selection (GS), and genome editing (GE). We propose the characteristics of ideal palms and suggest a road map to breed ideal palms for sustainable palm oil.

Keywords

References

  1. Trends Genet. 2008 Mar;24(3):133-41 [PMID: 18262675]
  2. Am J Hum Genet. 1989 Mar;44(3):397-401 [PMID: 2563634]
  3. Nat Rev Genet. 2011 Jun;12(6):443-51 [PMID: 21587300]
  4. New Phytol. 2020 Apr;226(2):426-440 [PMID: 31863488]
  5. Genomics. 2015 May;105(5-6):288-95 [PMID: 25702931]
  6. BMC Genomics. 2015 Aug 29;16:651 [PMID: 26318484]
  7. Sci Total Environ. 2019 Feb 20;652:48-51 [PMID: 30359800]
  8. Am J Hum Genet. 1991 Oct;49(4):746-56 [PMID: 1897522]
  9. Sci Rep. 2015 Feb 04;5:8232 [PMID: 25648560]
  10. BMC Genomics. 2014 Apr 27;15:309 [PMID: 24767304]
  11. PLoS One. 2017 Feb 13;12(2):e0171933 [PMID: 28192462]
  12. BMC Plant Biol. 2019 Dec 3;19(1):533 [PMID: 31795941]
  13. Theor Appl Genet. 2008 Apr;116(6):815-24 [PMID: 18219476]
  14. Nucleic Acids Res. 1995 Nov 11;23(21):4407-14 [PMID: 7501463]
  15. Am J Hum Genet. 1980 May;32(3):314-31 [PMID: 6247908]
  16. J Appl Genet. 2018 Feb;59(1):23-34 [PMID: 29214520]
  17. Plant Foods Hum Nutr. 2002 Fall;57(3-4):319-41 [PMID: 12602939]
  18. Sci Rep. 2018 Jan 12;8(1):691 [PMID: 29330432]
  19. BMC Genomics. 2016 Apr 14;17:289 [PMID: 27079197]
  20. Science. 1998 May 15;280(5366):1077-82 [PMID: 9582121]
  21. Bioinformation. 2007;2(4):128-31 [PMID: 21670789]
  22. Theor Appl Genet. 2010 May;120(8):1673-87 [PMID: 20182696]
  23. BMC Plant Biol. 2010 Oct 07;10:218 [PMID: 20929530]
  24. Plant Biotechnol J. 2010 Jan;8(1):2-9 [PMID: 19906089]
  25. Theor Appl Genet. 2015 Mar;128(3):397-410 [PMID: 25488416]
  26. Bioinformatics. 2019 Jul 15;35(14):2512-2514 [PMID: 30508039]
  27. Plant Sci. 2021 Mar;304:110731 [PMID: 33568284]
  28. Front Plant Sci. 2019 Oct 15;10:1263 [PMID: 31681369]
  29. Nat Commun. 2014 Jun 30;5:4106 [PMID: 24978855]
  30. J Dairy Sci. 2009 Feb;92(2):433-43 [PMID: 19164653]
  31. G3 (Bethesda). 2017 Jun 7;7(6):1683-1692 [PMID: 28592650]
  32. Nat Rev Genet. 2011 Jun 17;12(7):499-510 [PMID: 21681211]
  33. Sci Rep. 2016 Jan 08;6:19075 [PMID: 26743827]
  34. Plants (Basel). 2020 Nov 03;9(11): [PMID: 33152992]
  35. Genome. 2001 Jun;44(3):413-25 [PMID: 11444700]
  36. Theor Appl Genet. 2005 Feb;110(4):754-65 [PMID: 15723275]
  37. Genomics. 2020 Jan;112(1):1011-1020 [PMID: 31226486]
  38. Nucleic Acids Res. 1990 Nov 25;18(22):6531-5 [PMID: 1979162]
  39. Nature. 2013 Aug 15;500(7462):340-4 [PMID: 23883930]
  40. Front Plant Sci. 2016 Jun 21;7:771 [PMID: 27446094]
  41. 3 Biotech. 2020 Jul;10(7):306 [PMID: 32566443]
  42. Genome. 1997 Feb;40(1):116-22 [PMID: 18464812]
  43. Genetics. 2001 Apr;157(4):1819-29 [PMID: 11290733]
  44. Theor Appl Genet. 2004 Dec;110(1):157-66 [PMID: 15678329]
  45. PLoS One. 2014 May 09;9(5):e95412 [PMID: 24816555]
  46. Nat Plants. 2017 Jul 31;3:17107 [PMID: 28758991]
  47. DNA Res. 2016 Dec;23(6):527-533 [PMID: 27426468]
  48. BMC Genomics. 2015 Oct 15;16:798 [PMID: 26472667]
  49. Sci Rep. 2020 Jun 19;10(1):9998 [PMID: 32561804]
  50. Theor Appl Genet. 1975 Jan;46(7):319-30 [PMID: 24420173]
  51. BMC Plant Biol. 2009 Aug 26;9:114 [PMID: 19706196]
  52. PLoS One. 2013;8(1):e53076 [PMID: 23382832]
  53. Mol Plant. 2016 Aug 1;9(8):1132-1141 [PMID: 27112659]
  54. PLoS One. 2011;6(11):e26593 [PMID: 22069457]
  55. Biochem Soc Trans. 2000 Dec;28(6):969-72 [PMID: 11171275]
  56. Mol Ecol Resour. 2011 Jul;11(4):591-611 [PMID: 21565126]
  57. Front Plant Sci. 2019 Jun 04;10:722 [PMID: 31214232]
  58. Nature. 2013 Aug 15;500(7462):335-9 [PMID: 23883927]
  59. Nature. 2015 Sep 24;525(7570):533-7 [PMID: 26352475]
  60. BMC Genomics. 2017 Nov 2;18(1):839 [PMID: 29096603]
  61. Methods Mol Biol. 2019;1864:367-394 [PMID: 30415347]
  62. Sci Rep. 2019 Apr 29;9(1):6619 [PMID: 31036825]
  63. Sci Rep. 2019 Feb 13;9(1):1899 [PMID: 30760842]
  64. Sci Rep. 2017 Jun 6;7(1):2872 [PMID: 28588233]
  65. Genes (Basel). 2020 Jul 21;11(7): [PMID: 32708151]
  66. BMC Plant Biol. 2017 May 30;17(1):93 [PMID: 28558657]
  67. J Bacteriol. 1958 May;75(5):592-603 [PMID: 13538930]

Word Cloud

Created with Highcharts 10.0.0oilpalmbreedingyieldimprovementselectionPalmimportantcurrenttons/ha/yearHoweveryearsconventionalMolecularmoleculartechnologiessustainableapproachesidealpalmsoriginatingAfricaproductivecropspeciessourceedibleglobalplantationarea23millionhatheoreticalpotential182average38past100fieldmanagementplayedrolesincreasingtraitlimitedlong10-20phenotypiccyclealthoughimproved~10-20%pergenerationusingnovelwillaccelerategeneticmayreduceneeddeforestusearablelandexpandingplantationsturnmakescomprehensivelysynthesizeinformationrelevantliteratureachievementschallengesincludingtissueculturehaploidmutationmarker-assistedMASgenomicGSgenomeeditingGEproposecharacteristicssuggestroadmapbreedimprovingBreedingDNAmarkerMethodSustainability

Similar Articles

Cited By