Molecular testing raises thyroid nodule fine needle aspiration diagnostic value.

Dongyan Han, Ding Min, Rongli Xie, Zhengshi Wang, Guohui Xiao, Xiaohong Wang, Lei Dong, Zhiqiang Yin, Jian Fei
Author Information
  1. Dongyan Han: D Han, Department of pathology, Tongji University, Shanghai, China.
  2. Ding Min: D Min, Department of General Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
  3. Rongli Xie: R Xie, Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China.
  4. Zhengshi Wang: Z Wang, Thyroid Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
  5. Guohui Xiao: G Xiao, Department of General Surgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China.
  6. Xiaohong Wang: X Wang, Shanghai Rigen Biotechnology Co., Ltd., Shanghai, China.
  7. Lei Dong: L Dong, Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
  8. Zhiqiang Yin: Z Yin, Thyroid Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
  9. Jian Fei: J Fei, Department of General Surgery, Pancreatic Disease Center, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China.

Abstract

Thyroid fine needle aspiration biopsy (FNAB) remains indeterminate in 16%-24% of the cases. Molecular testing could improve the diagnostic accuracy of FNAB. This study examined the gene mutation profile of patients with thyroid nodules and analyzed the diagnostic ability of molecular testing for thyroid nodules using a self-developed 18-gene test. Between January 2019 and August 2021, 513 samples (414 FNABs and 99 formalin-fixed paraffin-embedded (FFPE) specimens) underwent molecular testing at Ruijin Hospital. Sensitivity (Sen), specificity (Spe), positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated. There were 457 mutations in 428 samples. The rates of BRAF, RAS, TERT promoter, RET/PTC, and NTRK3 fusion mutations were 73.3% (n=335), 9.6% (n=44), 2.8% (n=13), 4.8% (n=22), and 0.4% (n=2), respectively. The diagnostic ability of cytology and molecular testing were evaluated in Bethesda II and V-VI samples. For cytology alone, Sen, Spe, PPV, NPV, and accuracy were 100%, 25.0%, 97.4%, 100%, and 97.4%; these numbers were 87.5%, 50.0%, 98.0%, 12.5%, and 86.2% when considering positive mutation, and 87.5%, 75.0%, 99.0%, 17.6%, and 87.1% when considering positive cytology or and positive mutation. In Bethesda III-IV nodules, when relying solely on the presence of pathogenic mutations for diagnosis, Sen, Spe, PPV, NPV, and AC were 76.2%, 66.7%, 94.1%, 26.8%, and 75.0%, respectively. It might be necessary to analyze the molecular mechanisms of disease development at the genetic level to predict patients with malignant nodules more accurately in different risk strata and develop rational treatment strategies and definite management plans.

References

  1. Clin Cancer Res. 2018 Jul 1;24(13):3059-3068 [PMID: 29615459]
  2. Otolaryngol Head Neck Surg. 2017 Mar;156(3):472-479 [PMID: 28116986]
  3. JAMA. 2018 Mar 06;319(9):914-924 [PMID: 29509871]
  4. Eur J Endocrinol. 2016 Nov;175(5):R203-17 [PMID: 27666535]
  5. J Clin Endocrinol Metab. 2006 Jun;91(6):2414-23 [PMID: 16595592]
  6. Thyroid. 2017 Dec;27(12):1511-1522 [PMID: 28946813]
  7. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008 [PMID: 20182602]
  8. Eur Thyroid J. 2022 May 27;11(3): [PMID: 35521779]
  9. Thyroid. 2016 Jan;26(1):1-133 [PMID: 26462967]
  10. Cells. 2021 May 01;10(5): [PMID: 34062862]
  11. Mol Cell Endocrinol. 2008 Mar 12;284(1-2):21-7 [PMID: 18282654]
  12. J Intern Med. 2009 Jul;266(1):126-40 [PMID: 19522831]
  13. Cancer. 2011 Oct 15;117(20):4582-94 [PMID: 21432844]
  14. Elife. 2015 Jul 21;4: [PMID: 26194807]
  15. Curr Genomics. 2011 Dec;12(8):618-25 [PMID: 22654561]
  16. Endocr Relat Cancer. 2015 Oct;22(5):R235-52 [PMID: 26285815]
  17. Front Endocrinol (Lausanne). 2020 Feb 13;11:44 [PMID: 32117069]
  18. Front Endocrinol (Lausanne). 2021 May 26;12:676144 [PMID: 34122350]
  19. Nat Commun. 2017 Jun 05;8:15533 [PMID: 28580939]
  20. J Clin Endocrinol Metab. 2008 Mar;93(3):682-7 [PMID: 18073307]
  21. Asian Pac J Cancer Prev. ;18(5):1191-1199 [PMID: 28610401]
  22. Nat Rev Cancer. 2013 Mar;13(3):184-99 [PMID: 23429735]
  23. J Pathol. 2018 Feb;244(2):215-226 [PMID: 29144541]
  24. Oncologist. 2013;18(8):926-32 [PMID: 23873720]
  25. Thyroid. 2017 May;27(5):682-692 [PMID: 28351340]
  26. Front Endocrinol (Lausanne). 2018 Jul 19;9:398 [PMID: 30072953]
  27. J Clin Endocrinol Metab. 2013 May;98(5):E914-22 [PMID: 23539734]
  28. Cold Spring Harb Perspect Biol. 2013 Dec 01;5(12):a009233 [PMID: 24296167]
  29. Cancer. 2018 Apr 15;124(8):1682-1690 [PMID: 29345728]
  30. Thyroid. 2018 Aug;28(8):1004-1012 [PMID: 29848195]
  31. Oncogene. 1991 Sep;6(9):1667-72 [PMID: 1717926]
  32. Nat Rev Endocrinol. 2011 Aug 30;7(10):569-80 [PMID: 21878896]
  33. Endocr Pract. 2016 Sep;22(9):1081-7 [PMID: 27214302]
  34. J Clin Endocrinol Metab. 2014 Apr;99(4):1253-63 [PMID: 24276450]
  35. Endocr Relat Cancer. 2016 Mar;23(3):R143-55 [PMID: 26733501]
  36. BMC Neurol. 2020 Aug 20;20(1):310 [PMID: 32819307]
  37. Medicine (Baltimore). 2018 Jul;97(29):e11548 [PMID: 30024548]
  38. Nat Rev Cancer. 2011 Apr;11(4):289-301 [PMID: 21430697]
  39. Int J Cancer. 2001 Jan 20;95(1):62-6 [PMID: 11241313]
  40. Endocr Pract. 2016 May;22(5):622-39 [PMID: 27167915]
  41. Cancers (Basel). 2020 Oct 27;12(11): [PMID: 33120984]
  42. Eur J Endocrinol. 2016 Apr;174(4):R117-26 [PMID: 26510840]
  43. Thyroid. 2019 Nov;29(11):1594-1605 [PMID: 31469053]
  44. Cancer. 2015 Jul 1;121(13):2137-46 [PMID: 25731779]
  45. Front Endocrinol (Lausanne). 2021 May 13;12:649522 [PMID: 34054725]
  46. Thyroid. 2017 Nov;27(11):1341-1346 [PMID: 29091573]
  47. Acta Cytol. 2012;56(4):333-9 [PMID: 22846422]
  48. Folia Med (Plovdiv). 2019 Jun 1;61(2):172-179 [PMID: 31301652]
  49. Front Endocrinol (Lausanne). 2012 Apr 11;3:54 [PMID: 22654872]
  50. J Clin Endocrinol Metab. 2012 Jul;97(7):2299-306 [PMID: 22500044]
  51. Thyroid. 2020 Apr;30(4):536-547 [PMID: 31996097]
  52. Lancet. 2013 Mar 23;381(9871):1058-69 [PMID: 23668556]
  53. J Transl Med. 2016 Nov 21;14(1):322 [PMID: 27871285]

Word Cloud

Created with Highcharts 10.0.00%testingdiagnosticnodulesmolecularpositiveaccuracymutationthyroidsamplesSenSpevaluePPVNPVmutations8%4%cytology875%fineneedleaspirationFNABMolecularpatientsability99predictive6%respectivelyBethesda100%972%considering751%Thyroidbiopsyremainsindeterminate16%-24%casesimprovestudyexaminedgeneprofileanalyzedusingself-developed18-genetestJanuary2019August2021513414FNABsformalin-fixedparaffin-embeddedFFPEspecimensunderwentRuijinHospitalSensitivityspecificitynegativecalculated457428ratesBRAFRASTERTpromoterRET/PTCNTRK3fusion733%n=3359n=442n=134n=220n=2evaluatedIIV-VIalone25numbers5098128617III-IVrelyingsolelypresencepathogenicdiagnosisAC76667%9426mightnecessaryanalyzemechanismsdiseasedevelopmentgeneticlevelpredictmalignantaccuratelydifferentriskstratadeveloprationaltreatmentstrategiesdefinitemanagementplansraisesnodule

Similar Articles

Cited By (2)