Complex evolutionary processes maintain an ancient chromosomal inversion.

Patrik Nosil, Victor Soria-Carrasco, Romain Villoutreix, Marisol De-la-Mora, Clarissa F de Carvalho, Thomas Parchman, Jeffrey L Feder, Zachariah Gompert
Author Information
  1. Patrik Nosil: CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier 34090, France.
  2. Victor Soria-Carrasco: John Innes Centre, Norwich, NR4 7UH, UK.
  3. Romain Villoutreix: CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier 34090, France. ORCID
  4. Marisol De-la-Mora: CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier 34090, France. ORCID
  5. Clarissa F de Carvalho: CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier 34090, France. ORCID
  6. Thomas Parchman: Department of Biology, University of Nevada, Reno, NV 89557.
  7. Jeffrey L Feder: Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556. ORCID
  8. Zachariah Gompert: Department of Biology, Utah State University, Logan, UT 84322. ORCID

Abstract

Genome re-arrangements such as chromosomal inversions are often involved in adaptation. As such, they experience natural selection, which can erode genetic variation. Thus, whether and how inversions can remain polymorphic for extended periods of time remains debated. Here we combine genomics, experiments, and evolutionary modeling to elucidate the processes maintaining an inversion polymorphism associated with the use of a challenging host plant (Redwood trees) in stick insects. We show that the inversion is maintained by a combination of processes, finding roles for life-history trade-offs, heterozygote advantage, local adaptation to different hosts, and gene flow. We use models to show how such multi-layered regimes of balancing selection and gene flow provide resilience to help buffer populations against the loss of genetic variation, maintaining the potential for future evolution. We further show that the inversion polymorphism has persisted for millions of years and is not a result of recent introgression. We thus find that rather than being a nuisance, the complex interplay of evolutionary processes provides a mechanism for the long-term maintenance of genetic variation.

Keywords

Associated Data

Dryad | 10.5061/dryad.1vhhmgqzd

References

  1. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  2. Nat Ecol Evol. 2022 Dec;6(12):1952-1964 [PMID: 36280782]
  3. Science. 2022 Mar 18;375(6586):eabj7484 [PMID: 35298245]
  4. Curr Biol. 2016 Feb 8;26(3):344-50 [PMID: 26804558]
  5. Science. 2020 Jul 24;369(6502):460-466 [PMID: 32703880]
  6. Mol Ecol. 2012 Jun;21(12):2991-3005 [PMID: 22404645]
  7. Nature. 2012 Jul 5;487(7405):94-8 [PMID: 22722851]
  8. Genetics. 2006 May;173(1):419-34 [PMID: 16204214]
  9. Nature. 2020 Aug;584(7822):602-607 [PMID: 32641831]
  10. Nature. 2014 Aug 14;512(7513):194-7 [PMID: 25043035]
  11. Philos Trans R Soc Lond B Biol Sci. 2020 Aug 31;375(1806):20190541 [PMID: 32654646]
  12. Philos Trans R Soc Lond B Biol Sci. 2022 Aug;377(1856):20210200 [PMID: 35694752]
  13. Nature. 2010 Sep 30;467(7315):587-90 [PMID: 20844486]
  14. Evol Lett. 2021 May 07;5(3):196-213 [PMID: 34136269]
  15. Trends Ecol Evol. 2019 Mar;34(3):239-248 [PMID: 30691998]
  16. Evolution. 2009 Jan;63(1):84-103 [PMID: 18803687]
  17. Evolution. 2013 Apr;67(4):946-58 [PMID: 23550747]
  18. BMC Evol Biol. 2008 Oct 23;8:289 [PMID: 18947398]
  19. Science. 2018 Feb 16;359(6377):765-770 [PMID: 29449486]
  20. Evol Lett. 2021 Jan 15;5(1):48-60 [PMID: 33552535]
  21. Mol Ecol. 2017 May;26(9):2430-2448 [PMID: 28173627]
  22. Nat Rev Genet. 2010 Oct;11(10):665-7 [PMID: 20838407]
  23. Science. 2019 Feb 1;363(6426):499-504 [PMID: 30705186]
  24. PLoS Biol. 2006 May;4(5):e88 [PMID: 16683862]
  25. Ecol Lett. 2019 Feb;22(2):354-364 [PMID: 30569559]
  26. Mol Ecol. 2014 Sep;23(18):4555-73 [PMID: 24866941]
  27. Mol Ecol. 2017 Nov;26(22):6189-6205 [PMID: 28786544]
  28. Annu Rev Genet. 1976;10:253-80 [PMID: 797310]
  29. Gigascience. 2020 Jun 1;9(6): [PMID: 32463100]
  30. Genetics. 2023 Jun 05;: [PMID: 37279657]
  31. Science. 2006 Jun 16;312(5780):1614-20 [PMID: 16778047]
  32. PLoS Genet. 2009 Oct;5(10):e1000695 [PMID: 19851460]
  33. Genetics. 1966 Aug;54(2):595-609 [PMID: 5968643]
  34. Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24150-24156 [PMID: 31712446]
  35. PLoS Comput Biol. 2014 Apr 10;10(4):e1003537 [PMID: 24722319]
  36. Nat Ecol Evol. 2020 Dec;4(12):1673-1684 [PMID: 32929238]
  37. Evolution. 2011 Jul;65(7):1897-911 [PMID: 21729046]
  38. Evolution. 1994 Dec;48(6):1866-1879 [PMID: 28565164]
  39. Nat Ecol Evol. 2017 Feb 17;1(4):82 [PMID: 28812654]
  40. Mol Biol Evol. 2016 May;33(5):1317-36 [PMID: 26796550]
  41. Genes (Basel). 2021 Jul 17;12(7): [PMID: 34356100]
  42. Genomics Proteomics Bioinformatics. 2016 Oct;14(5):265-279 [PMID: 27646134]
  43. Genetics. 2002 Dec;162(4):2025-35 [PMID: 12524368]
  44. Evol Lett. 2020 May 27;4(4):282-301 [PMID: 32774879]
  45. J Evol Biol. 2018 Sep;31(9):1354-1364 [PMID: 29904977]
  46. Mol Ecol. 2021 Jun;30(12):2738-2755 [PMID: 33786937]
  47. Bioinformatics. 2011 Nov 1;27(21):2987-93 [PMID: 21903627]
  48. PLoS Biol. 2010 Sep 28;8(9): [PMID: 20927411]
  49. Proc Biol Sci. 2004 Jul 22;271(1547):1521-8 [PMID: 15306325]
  50. NAR Genom Bioinform. 2021 Jan 06;3(1):lqaa108 [PMID: 33575650]
  51. Evolution. 1981 Jan;35(1):124-138 [PMID: 28563447]
  52. Science. 2014 May 16;344(6185):738-42 [PMID: 24833390]
  53. Nature. 2020 Nov;587(7833):246-251 [PMID: 33177663]
  54. Proc Natl Acad Sci U S A. 1921 Aug;7(8):235-7 [PMID: 16576597]
  55. Mol Ecol Resour. 2021 Jul;21(5):1434-1451 [PMID: 33482035]
  56. Annu Rev Ecol Evol Syst. 2008 Dec 1;39:21-42 [PMID: 20419035]
  57. Proc Biol Sci. 2006 Jul 7;273(1594):1587-93 [PMID: 16769628]
  58. Mol Ecol. 2019 Mar;28(6):1333-1342 [PMID: 30252170]
  59. Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2300673120 [PMID: 37311002]
  60. Nat Ecol Evol. 2018 Jul;2(7):1128-1138 [PMID: 29942074]
  61. Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9090-5 [PMID: 16754870]
  62. Nat Commun. 2020 Feb 3;11(1):670 [PMID: 32015341]
  63. Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E9932-E9941 [PMID: 29087300]
  64. Nat Genet. 2021 Mar;53(3):288-293 [PMID: 33495598]
  65. Mol Ecol. 2021 Oct;30(20):4991-5008 [PMID: 34379852]
  66. Evolution. 2002 Dec;56(12):2472-83 [PMID: 12583587]
  67. Genetics. 2000 Jun;155(2):945-59 [PMID: 10835412]
  68. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  69. Genome Res. 2011 Sep;21(9):1512-28 [PMID: 21665927]
  70. Science. 2022 Jul 22;377(6604):399-405 [PMID: 35862520]
  71. Proc Biol Sci. 2012 Dec 22;279(1749):5058-65 [PMID: 22696527]
  72. Philos Trans R Soc Lond B Biol Sci. 2022 Jul 18;377(1855):20200508 [PMID: 35634927]

MeSH Term

Animals
Chromosome Inversion
Acclimatization
Gene Flow
Genomics
Heterozygote
Neoptera

Word Cloud

Created with Highcharts 10.0.0processesinversionadaptationselectiongeneticvariationevolutionaryshowgeneflowchromosomalinversionscanmaintainingpolymorphismuselocalbalancingGenomere-arrangementsofteninvolvedexperiencenaturalerodeThuswhetherremainpolymorphicextendedperiodstimeremainsdebatedcombinegenomicsexperimentsmodelingelucidateassociatedchallenginghostplantRedwoodtreesstickinsectsmaintainedcombinationfindingroleslife-historytrade-offsheterozygoteadvantagedifferenthostsmodelsmulti-layeredregimesprovideresiliencehelpbufferpopulationslosspotentialfutureevolutionpersistedmillionsyearsresultrecentintrogressionthusfindrathernuisancecomplexinterplayprovidesmechanismlong-termmaintenanceComplexmaintainancientecologicalgeneticsinsect-plantinteractions

Similar Articles

Cited By