Astrocytic deletion of protein kinase R-like ER kinase (PERK) does not affect learning and memory in aged mice but worsens outcome from experimental stroke.

Anirudhya Lahiri, James C Walton, Ning Zhang, Neil Billington, A Courtney DeVries, Gordon P Meares
Author Information
  1. Anirudhya Lahiri: Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA. ORCID
  2. James C Walton: Department of Neuroscience, West Virginia University, Morgantown, West Virginia, USA.
  3. Ning Zhang: Department of Neuroscience, West Virginia University, Morgantown, West Virginia, USA.
  4. Neil Billington: Department of Biochemistry, West Virginia University, Morgantown, West Virginia, USA.
  5. A Courtney DeVries: Department of Neuroscience, West Virginia University, Morgantown, West Virginia, USA.
  6. Gordon P Meares: Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA.

Abstract

Aging is associated with cognitive decline and is the main risk factor for a myriad of conditions including neurodegeneration and stroke. Concomitant with aging is the progressive accumulation of misfolded proteins and loss of proteostasis. Accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress and activation of the unfolded protein response (UPR). The UPR is mediated, in part, by the eukaryotic initiation factor 2α (eIF2α) kinase protein kinase R-like ER kinase (PERK). Phosphorylation of eIF2α reduces protein translation as an adaptive mechanism but this also opposes synaptic plasticity. PERK, and other eIF2α kinases, have been widely studied in neurons where they modulate both cognitive function and response to injury. The impact of astrocytic PERK signaling in cognitive processes was previously unknown. To examine this, we deleted PERK from astrocytes (AstroPERK ) and examined the impact on cognitive functions in middle-aged and old mice of both sexes. Additionally, we tested the outcome following experimental stroke using the transient middle cerebral artery occlusion (MCAO) model. Tests of short-term and long-term learning and memory as well as of cognitive flexibility in middle-aged and old mice revealed that astrocytic PERK does not regulate these processes. Following MCAO, AstroPERK had increased morbidity and mortality. Collectively, our data demonstrate that astrocytic PERK has limited impact on cognitive function and has a more prominent role in the response to neural injury.

Keywords

References

  1. Nat Rev Neurosci. 2014 Apr;15(4):233-49 [PMID: 24619348]
  2. PLoS One. 2016 Sep 14;11(9):e0162766 [PMID: 27627766]
  3. Cell. 2012 Mar 2;148(5):1039-50 [PMID: 22385967]
  4. Acta Neuropathol. 2010 Jan;119(1):7-35 [PMID: 20012068]
  5. Nature. 2005 Aug 25;436(7054):1166-73 [PMID: 16121183]
  6. Hum Mol Genet. 2017 Dec 15;26(24):4896-4905 [PMID: 29036441]
  7. J Biol Chem. 2016 Jul 22;291(30):15830-40 [PMID: 27226638]
  8. Front Neurosci. 2021 Jan 14;14:630713 [PMID: 33519373]
  9. Cell Rep. 2016 Feb 16;14(6):1382-1394 [PMID: 26854229]
  10. Stroke. 2020 May;51(5):1570-1577 [PMID: 32212900]
  11. Free Radic Biol Med. 2016 Nov;100:147-152 [PMID: 27365123]
  12. Cell. 2013 Jun 6;153(6):1194-217 [PMID: 23746838]
  13. Front Cell Dev Biol. 2020 Aug 28;8:814 [PMID: 33015035]
  14. Nature. 2008 Jul 24;454(7203):455-62 [PMID: 18650916]
  15. Cell Rep. 2014 Nov 6;9(3):1135-50 [PMID: 25437566]
  16. J Cell Biol. 2005 May 23;169(4):603-12 [PMID: 15911877]
  17. Cell. 2018 Aug 9;174(4):1015-1030.e16 [PMID: 30096299]
  18. Annu Rev Biochem. 2011;80:71-99 [PMID: 21495850]
  19. Neuroscience. 2010 Sep 1;169(3):1307-14 [PMID: 20538047]
  20. J Neurosci. 2014 Oct 29;34(44):14624-32 [PMID: 25355215]
  21. Stroke. 1989 Jan;20(1):84-91 [PMID: 2643202]
  22. Glia. 2012 May;60(5):771-81 [PMID: 22319003]
  23. Mol Cell Biol. 2014 Oct;34(20):3911-25 [PMID: 25113558]
  24. J Neurochem. 2001 Jun;77(5):1418-21 [PMID: 11389192]
  25. Nat Protoc. 2006;1(2):848-58 [PMID: 17406317]
  26. Neurobiol Learn Mem. 2013 Oct;105:93-9 [PMID: 23707798]
  27. Nature. 2012 May 06;485(7399):507-11 [PMID: 22622579]
  28. Science. 2020 Apr 24;368(6489): [PMID: 32327570]
  29. Neuron. 2009 Jan 15;61(1):10-26 [PMID: 19146809]
  30. J Cell Mol Med. 2018 Jul;22(7):3489-3502 [PMID: 29675957]
  31. J Neurosci. 2009 Feb 11;29(6):1874-86 [PMID: 19211894]
  32. Neuroscience. 2007 Jul 29;147(4):957-67 [PMID: 17590517]
  33. Nat Immunol. 2019 Aug;20(8):1023-1034 [PMID: 31263278]
  34. Aging Cell. 2017 Aug;16(4):615-623 [PMID: 28436203]
  35. Sci Signal. 2021 Feb 02;14(668): [PMID: 33531382]
  36. Mol Cell. 2003 Mar;11(3):619-33 [PMID: 12667446]
  37. FASEB J. 2012 Sep;26(9):3649-57 [PMID: 22665389]
  38. Brain Behav Immun. 2011 Jul;25(5):1008-16 [PMID: 21093580]
  39. Brain Res. 1975 Sep 12;95(1):61-73 [PMID: 1156869]
  40. Exp Neurol. 2002 Oct;177(2):538-46 [PMID: 12429199]
  41. Annu Rev Biochem. 2015;84:435-64 [PMID: 25784053]
  42. Elife. 2013 May 28;2:e00498 [PMID: 23741617]
  43. Neuropsychopharmacology. 2008 Jan;33(1):18-41 [PMID: 17728696]
  44. Mol Cell Biol. 2001 Aug;21(15):5018-30 [PMID: 11438658]
  45. Cell Death Dis. 2015 Mar 05;6:e1672 [PMID: 25741597]
  46. Front Aging Neurosci. 2011 May 25;3:9 [PMID: 21647305]
  47. Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):E6420-E6426 [PMID: 28696288]
  48. Mol Neurodegener. 2017 May 25;12(1):42 [PMID: 28545479]
  49. Nat Neurosci. 2017 Aug;20(8):1172-1179 [PMID: 28671695]
  50. Neuron. 2020 Mar 4;105(5):855-866.e5 [PMID: 31924446]
  51. BMC Bioinformatics. 2021 Sep 10;22(1):433 [PMID: 34507520]
  52. Front Mol Neurosci. 2017 Sep 07;10:286 [PMID: 28936164]
  53. Annu Rev Biochem. 1969;38:605-46 [PMID: 4896246]
  54. J Neurosci. 2020 Jan 8;40(2):424-446 [PMID: 31694961]
  55. Cell. 2011 Mar 4;144(5):810-23 [PMID: 21376239]
  56. Nat Rev Mol Cell Biol. 2019 Jul;20(7):421-435 [PMID: 30733602]
  57. Br Med Bull. 2009;92:135-52 [PMID: 19776035]
  58. Circulation. 2019 Mar 5;139(10):e56-e528 [PMID: 30700139]
  59. Annu Rev Pharmacol Toxicol. 2013;53:401-26 [PMID: 23294312]
  60. Neurobiol Aging. 2014 Oct;35(10):2272-81 [PMID: 24889041]
  61. Trends Neurosci. 2009 Dec;32(12):638-47 [PMID: 19782411]
  62. Brain Res. 2006 May 4;1087(1):60-6 [PMID: 16684512]
  63. Stroke. 2000 Aug;31(8):1939-44 [PMID: 10926961]
  64. J Neurosci. 2018 Jan 17;38(3):648-658 [PMID: 29196323]
  65. Neuroscience. 2018 Feb 1;370:14-26 [PMID: 28571720]
  66. Cell. 2007 Apr 6;129(1):195-206 [PMID: 17418795]
  67. Neurobiol Aging. 2006 Jul;27(7):973-82 [PMID: 15964666]
  68. Acta Neuropathol. 2015 Sep;130(3):315-31 [PMID: 26210990]
  69. Science. 2011 Nov 25;334(6059):1081-6 [PMID: 22116877]
  70. Neurosci Biobehav Rev. 2001 May;25(3):235-60 [PMID: 11378179]
  71. Mol Cell Biol. 2002 Jun;22(11):3864-74 [PMID: 11997520]
  72. Sci Transl Med. 2013 Oct 9;5(206):206ra138 [PMID: 24107777]
  73. Mol Brain. 2016 Jan 28;9:11 [PMID: 26822304]
  74. Neuron. 2020 Jan 8;105(1):150-164.e6 [PMID: 31753579]
  75. Neuropsychopharmacol Rep. 2019 Jun;39(2):100-118 [PMID: 30816023]
  76. Nat Neurosci. 2013 Sep;16(9):1299-305 [PMID: 23933749]
  77. Neurosci Bull. 2020 Feb;36(2):134-142 [PMID: 31309426]
  78. Semin Cell Dev Biol. 2022 May;125:101-109 [PMID: 34304995]
  79. Mol Cell Biol. 2003 Oct;23(20):7198-209 [PMID: 14517290]
  80. Bio Protoc. 2019 Feb 05;9(3):e3162 [PMID: 33654968]
  81. Neural Plast. 2013;2013:185463 [PMID: 24369508]
  82. JCI Insight. 2019 Jan 24;4(2): [PMID: 30674717]
  83. Expert Rev Mol Med. 2009 Jun 03;11:e17 [PMID: 19490732]
  84. Nature. 1999 Jan 21;397(6716):271-4 [PMID: 9930704]
  85. J Neurochem. 1977 May;28(5):929-34 [PMID: 864469]
  86. Nat Neurosci. 2014 Aug;17(8):1073-82 [PMID: 24974795]
  87. Brain. 2017 Jun 1;140(6):1768-1783 [PMID: 28430857]
  88. Nature. 2016 Nov 09;539(7628):180-186 [PMID: 27830812]
  89. Cell Mol Life Sci. 2014 Mar;71(6):1067-79 [PMID: 24135849]
  90. J Neurosci. 2017 Jun 14;37(24):5900-5911 [PMID: 28522733]
  91. Brain Res. 2016 Oct 1;1648(Pt B):588-593 [PMID: 27067187]
  92. Biomolecules. 2021 Feb 26;11(3): [PMID: 33652720]
  93. J Neurosci. 2012 Dec 5;32(49):17775-87 [PMID: 23223297]
  94. Cell Rep. 2012 Jun 28;1(6):676-88 [PMID: 22813743]
  95. Neurobiol Learn Mem. 2008 Mar;89(3):247-59 [PMID: 17919940]
  96. Nat Rev Mol Cell Biol. 2007 Jul;8(7):519-29 [PMID: 17565364]
  97. J Neurosci. 2005 Sep 21;25(38):8680-5 [PMID: 16177036]
  98. J Biol Chem. 2000 Aug 11;275(32):24881-5 [PMID: 10835430]
  99. Acta Neuropathol. 2015 Nov;130(5):633-42 [PMID: 26450683]
  100. Cell Mol Life Sci. 2016 Jan;73(1):79-94 [PMID: 26433683]
  101. Lancet Neurol. 2019 May;18(5):459-480 [PMID: 30879893]
  102. Front Pharmacol. 2019 Mar 05;10:153 [PMID: 30890934]
  103. J Neurochem. 2001 Aug;78(4):779-87 [PMID: 11520898]
  104. Neural Regen Res. 2022 Apr;17(4):705-716 [PMID: 34472455]
  105. J Neurochem. 2005 Sep;94(5):1235-42 [PMID: 16000157]
  106. Ann Transl Med. 2014 Aug;2(8):80 [PMID: 25333055]

Grants

  1. P20 GM103434/NIGMS NIH HHS
  2. P20 GM109098/NIGMS NIH HHS
  3. R01 NS099304/NINDS NIH HHS
  4. U54 GM104942/NIGMS NIH HHS

MeSH Term

Animals
Female
Male
Mice
Astrocytes
Endoplasmic Reticulum
Learning
Protein Kinases
Stroke
eIF-2 Kinase

Chemicals

Protein Kinases
PERK kinase
eIF-2 Kinase

Word Cloud

Created with Highcharts 10.0.0PERKkinasecognitiveproteinERstrokeresponseeIF2αR-likeimpactastrocyticmiceMCAOlearningmemoryfactoragingmisfoldedproteinsunfoldedUPRfunctioninjuryprocessesastrocytesAstroPERKmiddle-agedoldoutcomeexperimentalAgingassociateddeclinemainriskmyriadconditionsincludingneurodegenerationConcomitantprogressiveaccumulationlossproteostasisAccumulationendoplasmicreticulumleadsstressactivationmediatedparteukaryoticinitiationPhosphorylationreducestranslationadaptivemechanismalsoopposessynapticplasticitykinaseswidelystudiedneuronsmodulatesignalingpreviouslyunknownexaminedeletedexaminedfunctionssexesAdditionallytestedfollowingusingtransientmiddlecerebralarteryocclusionmodelTestsshort-termlong-termwellflexibilityrevealedregulateFollowingincreasedmorbiditymortalityCollectivelydatademonstratelimitedprominentroleneuralAstrocyticdeletionaffectagedworsensRRID:AB_10692650RRID:AB_2095847RRID:AB_2096481RRID:AB_2107445RRID:AB_2631098RRID:AB_304334RRID:Addgene_28306RRID:IMSR_JAX:023066RRID:IMSR_JAX:024098RRID:SCR_002798RRID:SCR_014210RRID:SCR_014289RRID:nif-0000-00280glia

Similar Articles

Cited By