RAB27B controls palmitoylation-dependent NRAS trafficking and signaling in myeloid leukemia.

Jian-Gang Ren, Bowen Xing, Kaosheng Lv, Rachel A O'Keefe, Mengfang Wu, Ruoxing Wang, Kaylyn M Bauer, Arevik Ghazaryan, George M Burslem, Jing Zhang, Ryan M O'Connell, Vinodh Pillai, Elizabeth O Hexner, Mark R Philips, Wei Tong
Author Information
  1. Jian-Gang Ren: The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
  2. Bowen Xing: Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  3. Kaosheng Lv: Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  4. Rachel A O'Keefe: Department of Medicine and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York, USA.
  5. Mengfang Wu: Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  6. Ruoxing Wang: Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  7. Kaylyn M Bauer: Department of Pathology, University of Utah, Salt Lake City, Utah, USA.
  8. Arevik Ghazaryan: Department of Pathology, University of Utah, Salt Lake City, Utah, USA.
  9. George M Burslem: Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
  10. Jing Zhang: McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  11. Ryan M O'Connell: Department of Pathology, University of Utah, Salt Lake City, Utah, USA.
  12. Vinodh Pillai: Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  13. Elizabeth O Hexner: Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
  14. Mark R Philips: Department of Medicine and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York, USA.
  15. Wei Tong: Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.

Abstract

RAS mutations are among the most prevalent oncogenic drivers in cancers. RAS proteins propagate signals only when associated with cellular membranes as a consequence of lipid modifications that impact their trafficking. Here, we discovered that RAB27B, a RAB family small GTPase, controlled NRAS palmitoylation and trafficking to the plasma membrane, a localization required for activation. Our proteomic studies revealed RAB27B upregulation in CBL- or JAK2-mutated myeloid malignancies, and its expression correlated with poor prognosis in acute myeloid leukemias (AMLs). RAB27B depletion inhibited the growth of CBL-deficient or NRAS-mutant cell lines. Strikingly, Rab27b deficiency in mice abrogated mutant but not WT NRAS-mediated progenitor cell growth, ERK signaling, and NRAS palmitoylation. Further, Rab27b deficiency significantly reduced myelomonocytic leukemia development in vivo. Mechanistically, RAB27B interacted with ZDHHC9, a palmitoyl acyltransferase that modifies NRAS. By regulating palmitoylation, RAB27B controlled c-RAF/MEK/ERK signaling and affected leukemia development. Importantly, RAB27B depletion in primary human AMLs inhibited oncogenic NRAS signaling and leukemic growth. We further revealed a significant correlation between RAB27B expression and sensitivity to MEK inhibitors in AMLs. Thus, our studies presented a link between RAB proteins and fundamental aspects of RAS posttranslational modification and trafficking, highlighting future therapeutic strategies for RAS-driven cancers.

Keywords

References

  1. Am J Hematol. 2020 Jan;95(1):97-115 [PMID: 31736132]
  2. J Biol Chem. 1997 May 30;272(22):14017-20 [PMID: 9162019]
  3. J Vis Exp. 2017 Aug 18;(126): [PMID: 28872138]
  4. RSC Med Chem. 2021 Dec 16;13(2):150-155 [PMID: 35308027]
  5. Leukemia. 2016 Sep;30(9):1935-8 [PMID: 27109513]
  6. J Immunol. 2017 Nov 15;199(10):3559-3570 [PMID: 28978688]
  7. Blood. 2007 Aug 1;110(3):1004-12 [PMID: 17446348]
  8. Blood. 2012 Jan 26;119(4):1032-5 [PMID: 22144181]
  9. Nat Chem Biol. 2021 Aug;17(8):856-864 [PMID: 33927411]
  10. Cell Stem Cell. 2021 Jul 1;28(7):1275-1290.e9 [PMID: 33711283]
  11. J Clin Invest. 2002 Jul;110(2):247-57 [PMID: 12122117]
  12. Nat Cell Biol. 2010 Jan;12(1):19-30; sup pp 1-13 [PMID: 19966785]
  13. Stem Cells. 2016 Jul;34(7):1859-71 [PMID: 26972179]
  14. Neuron. 2004 Dec 16;44(6):987-96 [PMID: 15603741]
  15. Blood. 2006 Oct 1;108(7):2349-57 [PMID: 16763213]
  16. Science. 2005 Mar 18;307(5716):1746-52 [PMID: 15705808]
  17. Blood. 2012 Oct 25;120(17):3397-406 [PMID: 22898602]
  18. Leukemia. 2018 May;32(5):1180-1188 [PMID: 29479064]
  19. Sci Rep. 2020 Aug 24;10(1):14136 [PMID: 32839520]
  20. Blood. 2021 Dec 2;138(22):2244-2255 [PMID: 34111291]
  21. Blood. 2014 Dec 18;124(26):3947-55 [PMID: 25361812]
  22. Biochem J. 2006 Oct 1;399(1):59-67 [PMID: 16780420]
  23. Sci Signal. 2009 Dec 22;2(102):ra86 [PMID: 20029031]
  24. Leukemia. 2018 Apr;32(4):931-940 [PMID: 28972594]
  25. Genes Dev. 2017 May 15;31(10):1007-1023 [PMID: 28611190]
  26. Mol Biol Cell. 2007 Nov;18(11):4377-86 [PMID: 17761531]
  27. Blood. 2006 May 15;107(10):3847-53 [PMID: 16434492]
  28. J Cell Biol. 2005 Jul 18;170(2):261-72 [PMID: 16027222]
  29. Nature. 2019 Nov;575(7781):217-223 [PMID: 31666701]
  30. J Biol Chem. 2005 Sep 2;280(35):31141-8 [PMID: 16000296]
  31. Blood. 2011 Jul 14;118(2):368-79 [PMID: 21586752]
  32. Leukemia. 2016 May;30(5):1225-8 [PMID: 26493479]
  33. J Cell Biol. 2016 Aug 15;214(4):445-58 [PMID: 27502489]
  34. Cancer Discov. 2020 Jan;10(1):54-71 [PMID: 31658955]
  35. Cold Spring Harb Perspect Med. 2018 Nov 1;8(11): [PMID: 29311131]
  36. Blood. 2009 Aug 27;114(9):1859-63 [PMID: 19571318]
  37. Nature. 2018 Oct;562(7728):526-531 [PMID: 30333627]
  38. Blood. 2020 May 14;135(20):1772-1782 [PMID: 32219446]
  39. Blood. 2013 Dec 5;122(24):3964-72 [PMID: 24113870]
  40. Blood. 2010 Dec 23;116(26):5991-6002 [PMID: 20921338]
  41. Blood. 2016 May 19;127(20):2391-405 [PMID: 27069254]
  42. Blood Adv. 2020 Aug 11;4(15):3677-3687 [PMID: 32777067]
  43. J Biol Chem. 2016 Dec 9;291(50):25965-25982 [PMID: 27702998]
  44. Cancer Res. 2012 May 15;72(10):2457-67 [PMID: 22589270]
  45. Biochem Biophys Res Commun. 2012 Mar 9;419(2):368-73 [PMID: 22349512]
  46. N Engl J Med. 2011 Jun 30;364(26):2496-506 [PMID: 21714648]
  47. J Cell Mol Med. 2020 Nov;24(21):12491-12503 [PMID: 32954656]
  48. Methods. 2006 Oct;40(2):191-7 [PMID: 17012032]
  49. Blood Cancer J. 2017 Dec 8;7(12):638 [PMID: 29217833]
  50. PLoS One. 2012;7(2):e31789 [PMID: 22363735]
  51. Nat Chem Biol. 2010 Jun;6(6):449-56 [PMID: 20418879]
  52. Blood. 2010 Apr 29;115(17):3598-605 [PMID: 20200357]
  53. Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4302-7 [PMID: 27044110]
  54. Cell. 2020 Apr 2;181(1):102-114 [PMID: 31955850]
  55. Sci Rep. 2020 Jul 22;10(1):12152 [PMID: 32699322]
  56. JCI Insight. 2022 Oct 10;7(19): [PMID: 36214220]
  57. Bioengineered. 2022 Mar;13(3):5103-5112 [PMID: 35164665]
  58. Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5872-7 [PMID: 17384153]
  59. Blood. 2006 Jul 15;108(2):566-74 [PMID: 16569768]
  60. Nat Commun. 2021 May 18;12(1):2901 [PMID: 34006870]
  61. BMC Cell Biol. 2014 Oct 31;15:39 [PMID: 25359237]
  62. Blood. 2003 Dec 1;102(12):3970-9 [PMID: 12907454]

Grants

  1. R01 CA271523/NCI NIH HHS
  2. R01 CA163489/NCI NIH HHS
  3. R01 AI123106/NIAID NIH HHS
  4. R01 DK127738/NIDDK NIH HHS
  5. R01 CA282668/NCI NIH HHS
  6. R01 CA152108/NCI NIH HHS
  7. R35 CA253178/NCI NIH HHS
  8. R01 HL133828/NHLBI NIH HHS

MeSH Term

Humans
Animals
Mice
Lipoylation
Proteomics
Leukemia, Myeloid
Signal Transduction
Mitogen-Activated Protein Kinase Kinases
Membrane Proteins
GTP Phosphohydrolases

Chemicals

Mitogen-Activated Protein Kinase Kinases
NRAS protein, human
Membrane Proteins
GTP Phosphohydrolases

Word Cloud

Created with Highcharts 10.0.0RAB27BNRAStraffickingsignalingRASpalmitoylationmyeloidAMLsgrowthleukemiaoncogeniccancersproteinsRABcontrolledstudiesrevealedexpressiondepletioninhibitedcellRab27bdeficiencydevelopmentmutationsamongprevalentdriverspropagatesignalsassociatedcellularmembranesconsequencelipidmodificationsimpactdiscoveredfamilysmallGTPaseplasmamembranelocalizationrequiredactivationproteomicupregulationCBL-JAK2-mutatedmalignanciescorrelatedpoorprognosisacuteleukemiasCBL-deficientNRAS-mutantlinesStrikinglymiceabrogatedmutantWTNRAS-mediatedprogenitorERKsignificantlyreducedmyelomonocyticvivoMechanisticallyinteractedZDHHC9palmitoylacyltransferasemodifiesregulatingc-RAF/MEK/ERKaffectedImportantlyprimaryhumanleukemicsignificantcorrelationsensitivityMEKinhibitorsThuspresentedlinkfundamentalaspectsposttranslationalmodificationhighlightingfuturetherapeuticstrategiesRAS-drivencontrolspalmitoylation-dependentCancerCellBiologyHematologySignaltransduction

Similar Articles

Cited By