Steroid hormone regulation of innate immunity in Drosophila melanogaster.

Scott A Keith
Author Information
  1. Scott A Keith: Department of Entomology, Cornell University, Ithaca, New York, United States of America. ORCID

Abstract

Endocrine signaling networks control diverse biological processes and life history traits across metazoans. In both invertebrate and vertebrate taxa, steroid hormones regulate immune system function in response to intrinsic and environmental stimuli, such as microbial infection. The mechanisms of this endocrine-immune regulation are complex and constitute an ongoing research endeavor facilitated by genetically tractable animal models. The 20-hydroxyecdysone (20E) is the major steroid hormone in arthropods, primarily studied for its essential role in mediating developmental transitions and metamorphosis; 20E also modulates innate immunity in a variety of insect taxa. This review provides an overview of our current understanding of 20E-mediated innate immune responses. The prevalence of correlations between 20E-driven developmental transitions and innate immune activation are summarized across a range of holometabolous insects. Subsequent discussion focuses on studies conducted using the extensive genetic resources available in Drosophila that have begun to reveal the mechanisms underlying 20E regulation of immunity in the contexts of both development and bacterial infection. Lastly, I propose directions for future research into 20E regulation of immunity that will advance our knowledge of how interactive endocrine networks coordinate animals' physiological responses to environmental microbes.

References

  1. Science. 2003 Sep 26;301(5641):1911-4 [PMID: 12958367]
  2. Genes Immun. 2021 Jul;22(3):125-140 [PMID: 34127827]
  3. Dev Biol. 2005 Mar 1;279(1):233-43 [PMID: 15708571]
  4. Gut Microbes. 2012 Jul-Aug;3(4):307-21 [PMID: 22572876]
  5. Cell Mol Life Sci. 2020 Nov;77(22):4523-4551 [PMID: 32448994]
  6. Immunity. 2021 Aug 10;54(8):1683-1697.e3 [PMID: 34107298]
  7. Bioessays. 2005 Oct;27(10):999-1010 [PMID: 16163709]
  8. Science. 2003 Feb 28;299(5611):1407-10 [PMID: 12610309]
  9. J Immunol. 2011 Jan 15;186(2):649-56 [PMID: 21209287]
  10. Development. 2021 Aug 1;148(15): [PMID: 34323271]
  11. EMBO J. 2002 Jun 3;21(11):2568-79 [PMID: 12032070]
  12. Dev Dyn. 2006 Feb;235(2):315-26 [PMID: 16273522]
  13. Cell Rep. 2017 Apr 25;19(4):836-848 [PMID: 28445733]
  14. Genes Dev. 2009 Oct 1;23(19):2333-44 [PMID: 19797770]
  15. Genes Dev. 1991 Jan;5(1):120-31 [PMID: 1899227]
  16. Zoological Lett. 2015 Nov 02;1:32 [PMID: 26605077]
  17. Dev Comp Immunol. 2017 Jul;72:128-139 [PMID: 28254619]
  18. PLoS Pathog. 2022 Sep 22;18(9):e1010837 [PMID: 36137163]
  19. Curr Biol. 2017 Feb 20;27(4):596-601 [PMID: 28190728]
  20. PLoS Pathog. 2018 Feb 2;14(2):e1006847 [PMID: 29394281]
  21. Insect Biochem Mol Biol. 1997 Oct;27(10):877-86 [PMID: 9474784]
  22. Dev Cell. 2019 Dec 16;51(6):787-803.e5 [PMID: 31735669]
  23. Proc Natl Acad Sci U S A. 2022 Jun 21;119(25):e2202932119 [PMID: 35696563]
  24. FEBS J. 2021 Jul;288(13):3928-3947 [PMID: 33021015]
  25. Gen Comp Endocrinol. 2020 Jun 1;292:113437 [PMID: 32061639]
  26. Parasit Vectors. 2021 Jan 29;14(1):86 [PMID: 33514413]
  27. FEBS J. 2015 Apr;282(8):1368-82 [PMID: 25688716]
  28. Dev Comp Immunol. 2022 Feb;127:104305 [PMID: 34718077]
  29. Wiley Interdiscip Rev Dev Biol. 2019 May;8(3):e339 [PMID: 30561900]
  30. Cell Tissue Res. 2020 Nov;382(2):233-266 [PMID: 32827072]
  31. Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10017-22 [PMID: 18632567]
  32. Mech Ageing Dev. 2009 Aug;130(8):547-52 [PMID: 19486910]
  33. Insect Mol Biol. 2014 Dec;23(6):842-56 [PMID: 25224836]
  34. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12590-5 [PMID: 11606746]
  35. J Immunol. 2014 Apr 15;192(8):3455-62 [PMID: 24706930]
  36. J Exp Biol. 2008 Aug;211(Pt 16):2712-24 [PMID: 18689425]
  37. Sci Rep. 2020 Dec 3;10(1):21084 [PMID: 33273588]
  38. PLoS Genet. 2021 Nov 29;17(11):e1009916 [PMID: 34843450]
  39. Immunity. 2000 Nov;13(5):737-48 [PMID: 11114385]
  40. Elife. 2020 Aug 10;9: [PMID: 32773037]
  41. J Invertebr Pathol. 1969 Nov;14(3):365-74 [PMID: 4904970]
  42. Cell Host Microbe. 2018 Feb 14;23(2):215-228.e4 [PMID: 29398649]
  43. J Insect Physiol. 1970 Jan;16(1):185-97 [PMID: 4907049]
  44. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5099-103 [PMID: 16592466]
  45. Nature. 2020 Aug;584(7821):415-419 [PMID: 32641829]
  46. Nature. 2020 Nov;587(7834):455-459 [PMID: 33116314]
  47. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14614-9 [PMID: 9405661]
  48. Biochem Biophys Res Commun. 1992 Nov 16;188(3):1169-75 [PMID: 1445351]
  49. J Cell Biol. 2006 May 8;173(3):405-16 [PMID: 16651377]
  50. Front Immunol. 2018 Oct 04;9:2279 [PMID: 30337927]
  51. Front Immunol. 2018 Jun 12;9:1332 [PMID: 29946321]
  52. Curr Biol. 2006 Oct 24;16(20):1977-85 [PMID: 17055976]
  53. Fly (Austin). 2010 Oct-Dec;4(4):306-11 [PMID: 20798594]
  54. Horm Behav. 2017 Feb;88:95-105 [PMID: 27956226]
  55. PLoS Pathog. 2013 Oct;9(10):e1003720 [PMID: 24204269]
  56. Curr Biol. 2019 Sep 9;29(17):2790-2800.e4 [PMID: 31402304]
  57. Semin Cell Dev Biol. 2023 Mar 30;138:128-141 [PMID: 35440411]
  58. Cell Metab. 2017 Mar 7;25(3):522-534 [PMID: 28273475]
  59. Trends Ecol Evol. 2023 Jan;38(1):85-95 [PMID: 36208964]
  60. Curr Opin Insect Sci. 2020 Jun;39:84-90 [PMID: 32339931]
  61. Curr Biol. 2014 May 19;24(10):1145-52 [PMID: 24794300]
  62. Cell Death Differ. 2020 Jan;27(1):1-14 [PMID: 31745213]
  63. Wiley Interdiscip Rev Dev Biol. 2019 Sep;8(5):e344 [PMID: 30993906]
  64. BMC Genomics. 2010 Oct 09;11:549 [PMID: 20932328]
  65. Cell Metab. 2011 Sep 7;14(3):403-14 [PMID: 21907145]
  66. Curr Biol. 2015 Apr 20;25(8):993-1004 [PMID: 25802149]
  67. Cell Metab. 2018 Sep 4;28(3):449-462.e5 [PMID: 29937377]
  68. Genome Biol. 2005;6(12):R99 [PMID: 16356271]
  69. Philos Trans R Soc Lond B Biol Sci. 2019 Oct 14;374(1783):20190073 [PMID: 31438821]
  70. J Insect Physiol. 2022 Jul;140:104414 [PMID: 35728669]
  71. Proc Biol Sci. 2010 Dec 7;277(1700):3649-57 [PMID: 20573620]
  72. Mol Immunol. 2015 Aug;66(2):325-39 [PMID: 25931442]
  73. Insect Mol Biol. 2009 Oct;18(5):595-605 [PMID: 19754738]
  74. Front Immunol. 2021 Jun 23;12:672853 [PMID: 34248954]
  75. Dev Biol. 2002 Oct 1;250(1):101-11 [PMID: 12297099]
  76. Mol Cell Endocrinol. 2020 Feb 15;502:110668 [PMID: 31821857]
  77. Dev Cell. 2003 Jul;5(1):59-72 [PMID: 12852852]
  78. J Insect Physiol. 2012 Apr;58(4):488-97 [PMID: 22306292]
  79. Nature. 1993 Dec 2;366(6454):476-9 [PMID: 8247157]
  80. Dev Cell. 2018 Nov 5;47(3):294-305.e7 [PMID: 30293839]
  81. BMC Biol. 2018 May 31;16(1):60 [PMID: 29855367]
  82. Genetics. 2018 Jun;209(2):367-380 [PMID: 29844090]
  83. J Embryol Exp Morphol. 1965 Aug;14(1):89-110 [PMID: 5867179]
  84. Environ Microbiol. 2011 Jul;13(7):1889-900 [PMID: 21631690]
  85. Bioessays. 1990 Dec;12(12):561-8 [PMID: 2127884]
  86. J Insect Physiol. 2011 Sep;57(9):1179-84 [PMID: 21704633]
  87. Proc Natl Acad Sci U S A. 2019 May 14;116(20):9893-9902 [PMID: 31019084]
  88. Cell Rep. 2015 Sep 8;12(10):1656-67 [PMID: 26321641]
  89. PLoS Pathog. 2016 Dec 15;12(12):e1006060 [PMID: 27977810]
  90. Arch Insect Biochem Physiol. 1999 Nov;42(3):198-212 [PMID: 10536048]
  91. Biol Open. 2013 Dec 15;2(12):1412-20 [PMID: 24285708]
  92. Cell Stem Cell. 2010 Nov 5;7(5):581-92 [PMID: 21040900]
  93. Elife. 2017 Oct 12;6: [PMID: 29022878]
  94. Hum Mol Genet. 2015 Mar 15;24(6):1741-54 [PMID: 25432537]
  95. Annu Rev Entomol. 2010;55:207-25 [PMID: 19725772]
  96. Mol Cell Biol. 1991 Apr;11(4):1846-53 [PMID: 2005885]
  97. FEBS Lett. 2016 Nov;590(22):4034-4051 [PMID: 27455465]
  98. BMC Genomics. 2008 Sep 29;9:446 [PMID: 18823557]
  99. Dev Biol. 2002 Mar 1;243(1):65-80 [PMID: 11846478]
  100. Elife. 2021 Jul 22;10: [PMID: 34292149]
  101. Arch Insect Biochem Physiol. 1996;33(3-4):231-44 [PMID: 8913033]
  102. Insect Biochem Mol Biol. 2022 Dec;151:103830 [PMID: 36064128]
  103. Sci Rep. 2020 Aug 24;10(1):14097 [PMID: 32839462]
  104. Science. 1978 Jun 30;200(4349):1448-59 [PMID: 96525]
  105. Genetics. 2013 May;194(1):133-42 [PMID: 23502677]
  106. Philos Trans R Soc Lond B Biol Sci. 2019 Oct 14;374(1783):20190068 [PMID: 31438811]
  107. Genetics. 2011 May;188(1):127-39 [PMID: 21385730]
  108. Dev Biol. 2021 Jan 1;469:135-143 [PMID: 33131706]
  109. mSphere. 2020 Apr 15;5(2): [PMID: 32295874]
  110. Nat Rev Immunol. 2014 Dec;14(12):796-810 [PMID: 25421701]
  111. BMC Biol. 2022 Jun 2;20(1):127 [PMID: 35655304]
  112. Annu Rev Genet. 2013;47:377-404 [PMID: 24016187]
  113. Dis Model Mech. 2019 Apr 4;12(4): [PMID: 30910908]
  114. Allergol Int. 2022 Oct;71(4):432-436 [PMID: 35973911]
  115. PLoS Pathog. 2016 Nov 28;12(11):e1006034 [PMID: 27893816]
  116. Metabolites. 2023 Feb 24;13(3): [PMID: 36984780]
  117. J Insect Physiol. 2012 Sep;58(9):1192-201 [PMID: 22698822]
  118. EMBO J. 1998 Aug 10;17(5):1217-27 [PMID: 9482719]
  119. Genetics. 1995 Nov;141(3):1025-35 [PMID: 8582609]
  120. Cell Rep. 2020 Jun 9;31(10):107736 [PMID: 32521261]
  121. EMBO J. 2013 May 29;32(11):1626-38 [PMID: 23652443]
  122. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6167-71 [PMID: 1631105]
  123. Curr Opin Insect Sci. 2021 Feb;43:54-62 [PMID: 33214126]
  124. PLoS Biol. 2015 Aug 18;13(8):e1002226 [PMID: 26284777]
  125. Cell Rep. 2022 Mar 29;38(13):110572 [PMID: 35354023]
  126. Curr Biol. 2020 Jan 20;30(2):359-366.e3 [PMID: 31928869]
  127. Nature. 2014 Aug 28;512(7515):393-9 [PMID: 24670639]
  128. Genes Dev. 2000 Oct 1;14(19):2461-71 [PMID: 11018014]
  129. Eur J Biochem. 1992 Feb 15;204(1):395-9 [PMID: 1740152]
  130. Curr Opin Insect Sci. 2021 Feb;43:70-77 [PMID: 33127508]
  131. Dis Model Mech. 2019 May 30;12(5): [PMID: 31072958]
  132. Dev Biol. 1993 Dec;160(2):388-404 [PMID: 8253272]
  133. Mol Cell. 1999 Aug;4(2):175-86 [PMID: 10488333]
  134. Genetics. 2020 Oct;216(2):269-313 [PMID: 33023929]
  135. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 [PMID: 23391737]
  136. Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1122-6 [PMID: 15657141]
  137. Fly (Austin). 2022 Dec;16(1):152-176 [PMID: 35499154]
  138. EMBO J. 1990 Sep;9(9):2969-76 [PMID: 2390977]
  139. Curr Opin Insect Sci. 2019 Feb;31:8-13 [PMID: 31109678]
  140. Mol Cell. 2014 Apr 10;54(1):180-192 [PMID: 24685159]
  141. Annu Rev Entomol. 2018 Jan 7;63:31-45 [PMID: 28938083]
  142. Arch Insect Biochem Physiol. 1991;17(2-3):67-80 [PMID: 1802032]
  143. Genome Res. 2009 Jun;19(6):1006-13 [PMID: 19237466]
  144. Nat Rev Genet. 2005 Apr;6(4):311-23 [PMID: 15803199]
  145. J Innate Immun. 2015;7(1):74-86 [PMID: 25247883]
  146. Insect Biochem Mol Biol. 1996 Feb;26(2):155-60 [PMID: 8882658]
  147. Annu Rev Entomol. 2013;58:497-516 [PMID: 23072462]

Grants

  1. R01 AI141385/NIAID NIH HHS
  2. T32 AI145821/NIAID NIH HHS

MeSH Term

Animals
Drosophila melanogaster
Gene Expression Regulation, Developmental
Steroids
Drosophila
Immunity, Innate
Juvenile Hormones
Ecdysterone
Metamorphosis, Biological

Chemicals

Steroids
Juvenile Hormones
Ecdysterone

Word Cloud

Created with Highcharts 10.0.0regulation20EinnateimmunityimmunenetworksacrosstaxasteroidenvironmentalinfectionmechanismsresearchhormonedevelopmentaltransitionsresponsesDrosophilaEndocrinesignalingcontroldiversebiologicalprocesseslifehistorytraitsmetazoansinvertebratevertebratehormonesregulatesystemfunctionresponseintrinsicstimulimicrobialendocrine-immunecomplexconstituteongoingendeavorfacilitatedgeneticallytractableanimalmodels20-hydroxyecdysonemajorarthropodsprimarilystudiedessentialrolemediatingmetamorphosisalsomodulatesvarietyinsectreviewprovidesoverviewcurrentunderstanding20E-mediatedprevalencecorrelations20E-drivenactivationsummarizedrangeholometabolousinsectsSubsequentdiscussionfocusesstudiesconductedusingextensivegeneticresourcesavailablebegunrevealunderlyingcontextsdevelopmentbacterialLastlyproposedirectionsfuturewilladvanceknowledgeinteractiveendocrinecoordinateanimals'physiologicalmicrobesSteroidmelanogaster

Similar Articles

Cited By (5)