A novel collaborative self-supervised learning method for radiomic data.

Zhiyuan Li, Hailong Li, Anca L Ralescu, Jonathan R Dillman, Nehal A Parikh, Lili He
Author Information
  1. Zhiyuan Li: Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA; Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA.
  2. Hailong Li: Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
  3. Anca L Ralescu: Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA.
  4. Jonathan R Dillman: Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
  5. Nehal A Parikh: Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, U niversity of Cincinnati College of Medicine, Cincinnati, OH, USA.
  6. Lili He: Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA. Electronic address: lili.he@cchmc.org.

Abstract

The computer-aided disease diagnosis from radiomic data is important in many medical applications. However, developing such a technique relies on labeling radiological images, which is a time-consuming, labor-intensive, and expensive process. In this work, we present the first novel collaborative self-supervised learning method to solve the challenge of insufficient labeled radiomic data, whose characteristics are different from text and image data. To achieve this, we present two collaborative pretext tasks that explore the latent pathological or biological relationships between regions of interest and the similarity and dissimilarity of information between subjects. Our method collaboratively learns the robust latent feature representations from radiomic data in a self-supervised manner to reduce human annotation efforts, which benefits the disease diagnosis. We compared our proposed method with other state-of-the-art self-supervised learning methods on a simulation study and two independent datasets. Extensive experimental results demonstrated that our method outperforms other self-supervised learning methods on both classification and regression tasks. With further refinement, our method will have the potential advantage in automatic disease diagnosis with large-scale unlabeled data available.

Keywords

References

  1. IEEE Trans Med Imaging. 2020 Dec;39(12):4023-4033 [PMID: 32746140]
  2. Aging Clin Exp Res. 2021 Jun;33(6):1709-1711 [PMID: 31428998]
  3. Sci Rep. 2019 Jan 24;9(1):614 [PMID: 30679599]
  4. Radiology. 2016 Feb;278(2):563-77 [PMID: 26579733]
  5. Schizophr Res. 2020 Sep;223:337-344 [PMID: 32988740]
  6. Neurosci Lett. 2017 Jun 9;651:88-94 [PMID: 28435046]
  7. Methods. 2021 Apr;188:122-132 [PMID: 31978538]
  8. AJR Am J Roentgenol. 2019 Sep;213(3):592-601 [PMID: 31120779]
  9. Comput Biol Med. 2021 Dec;139:104998 [PMID: 34739971]
  10. Ann Transl Med. 2020 Jul;8(14):859 [PMID: 32793703]
  11. Med Image Anal. 2019 Dec;58:101539 [PMID: 31374449]
  12. Breast Cancer Res Treat. 2018 Jun;169(2):217-229 [PMID: 29396665]
  13. Liver Int. 2020 Sep;40(9):2050-2063 [PMID: 32515148]
  14. World J Gastroenterol. 2009 Jul 14;15(26):3298-302 [PMID: 19598307]
  15. IEEE Access. 2018;6:77796-77806 [PMID: 30607311]
  16. J Pediatr. 2021 Jun;233:58-65.e3 [PMID: 33259857]
  17. Front Neurol. 2019 Oct 03;10:1059 [PMID: 31632342]
  18. Transl Psychiatry. 2021 Sep 6;11(1):462 [PMID: 34489405]
  19. Curr Alzheimer Res. 2020;17(3):297-309 [PMID: 32124697]
  20. Eur Radiol. 2019 Aug;29(8):4068-4076 [PMID: 30443758]
  21. Front Oncol. 2015 Dec 03;5:272 [PMID: 26697407]
  22. Radiology. 2020 May;295(2):328-338 [PMID: 32154773]
  23. Brief Bioinform. 2021 Mar 22;22(2):1592-1603 [PMID: 33569575]
  24. Comput Methods Programs Biomed. 2020 Mar;185:105134 [PMID: 31675644]
  25. Semin Cancer Biol. 2021 Jul;72:238-250 [PMID: 32371013]
  26. Cancer Res. 2017 Nov 1;77(21):e104-e107 [PMID: 29092951]
  27. Schizophr Bull. 2018 Aug 20;44(5):1053-1059 [PMID: 29471434]
  28. Comput Biol Med. 2021 May;132:104320 [PMID: 33735760]
  29. Eur J Cancer. 2012 Mar;48(4):441-6 [PMID: 22257792]
  30. Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):1236-1243 [PMID: 30353872]
  31. IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1334-9 [PMID: 16119271]
  32. Clin Mol Hepatol. 2019 Mar;25(1):21-29 [PMID: 30441889]
  33. Neuroimage. 2018 Jun;173:88-112 [PMID: 29409960]
  34. Nat Commun. 2020 Feb 4;11(1):696 [PMID: 32019924]
  35. Neurooncol Adv. 2021 Jan 23;2(Suppl 4):iv3-iv14 [PMID: 33521636]
  36. Front Neurosci. 2018 Jul 24;12:491 [PMID: 30087587]
  37. Cancer Med. 2020 Jan;9(2):496-506 [PMID: 31769230]
  38. IEEE Trans Med Imaging. 2021 Sep;40(9):2284-2294 [PMID: 33891550]
  39. Cancers (Basel). 2022 Jul 18;14(14): [PMID: 35884551]
  40. Cancers (Basel). 2021 Jun 21;13(12): [PMID: 34205631]
  41. Korean J Radiol. 2020 Apr;21(4):387-401 [PMID: 32193887]
  42. Neuroimage. 2012 Sep;62(3):1499-509 [PMID: 22713673]

Grants

  1. R01 EB029944/NIBIB NIH HHS
  2. R01 EB030582/NIBIB NIH HHS
  3. R01 NS094200/NINDS NIH HHS
  4. R01 NS096037/NINDS NIH HHS

MeSH Term

Humans
Computer Simulation
Diagnosis, Computer-Assisted
Supervised Machine Learning

Word Cloud

Created with Highcharts 10.0.0datalearningmethodself-superviseddiagnosisradiomicdiseasecollaborativepresentnoveltwotaskslatentmethodscomputer-aidedimportantmanymedicalapplicationsHoweverdevelopingtechniquerelieslabelingradiologicalimagestime-consuminglabor-intensiveexpensiveprocessworkfirstsolvechallengeinsufficientlabeledwhosecharacteristicsdifferenttextimageachievepretextexplorepathologicalbiologicalrelationshipsregionsinterestsimilaritydissimilarityinformationsubjectscollaborativelylearnsrobustfeaturerepresentationsmannerreducehumanannotationeffortsbenefitscomparedproposedstate-of-the-artsimulationstudyindependentdatasetsExtensiveexperimentalresultsdemonstratedoutperformsclassificationregressionrefinementwillpotentialadvantageautomaticlarge-scaleunlabeledavailableCollaborativeDiseaseMRIRadiomicSelf-supervised

Similar Articles

Cited By