Mid-infrared chemical imaging of intracellular tau fibrils using fluorescence-guided computational photothermal microscopy.

Jian Zhao, Lulu Jiang, Alex Matlock, Yihong Xu, Jiabei Zhu, Hongbo Zhu, Lei Tian, Benjamin Wolozin, Ji-Xin Cheng
Author Information
  1. Jian Zhao: Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA. jianzhao@knights.ucf.edu. ORCID
  2. Lulu Jiang: Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA.
  3. Alex Matlock: Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA. ORCID
  4. Yihong Xu: Department of Physics, Boston University, Boston, MA, 02215, USA.
  5. Jiabei Zhu: Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
  6. Hongbo Zhu: State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033, Changchun, China. ORCID
  7. Lei Tian: Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA. ORCID
  8. Benjamin Wolozin: Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA.
  9. Ji-Xin Cheng: Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA. jxcheng@bu.edu. ORCID

Abstract

Amyloid proteins are associated with a broad spectrum of neurodegenerative diseases. However, it remains a grand challenge to extract molecular structure information from intracellular amyloid proteins in their native cellular environment. To address this challenge, we developed a computational chemical microscope integrating 3D mid-infrared photothermal imaging with fluorescence imaging, termed Fluorescence-guided Bond-Selective Intensity Diffraction Tomography (FBS-IDT). Based on a low-cost and simple optical design, FBS-IDT enables chemical-specific volumetric imaging and 3D site-specific mid-IR fingerprint spectroscopic analysis of tau fibrils, an important type of amyloid protein aggregates, in their intracellular environment. Label-free volumetric chemical imaging of human cells with/without seeded tau fibrils is demonstrated to show the potential correlation between lipid accumulation and tau aggregate formation. Depth-resolved mid-infrared fingerprint spectroscopy is performed to reveal the protein secondary structure of the intracellular tau fibrils. 3D visualization of the β-sheet for tau fibril structure is achieved.

References

ACS Cent Sci. 2020 Apr 22;6(4):478-486 [PMID: 32341997]
Opt Express. 2006 May 1;14(9):3942-51 [PMID: 19516542]
Anal Chem. 2014 Dec 16;86(24):12047-54 [PMID: 25415602]
Opt Express. 2015 Jun 29;23(13):16933-48 [PMID: 26191704]
Nat Protoc. 2014 Aug;9(8):1771-91 [PMID: 24992094]
Ann Neurol. 2004 Mar;55(3):306-19 [PMID: 14991808]
Anal Chem. 2022 Oct 18;94(41):14242-14250 [PMID: 36197677]
Front Neurol. 2020 Sep 30;11:579434 [PMID: 33101187]
Nat Med. 2021 Jun;27(6):954-963 [PMID: 34083813]
PLoS One. 2017 Jan 24;12(1):e0170611 [PMID: 28118388]
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4376-85 [PMID: 25261551]
Nature. 2017 Jul 13;547(7662):185-190 [PMID: 28678775]
Lancet Neurol. 2019 Jan;18(1):88-106 [PMID: 30497964]
Proc Natl Acad Sci U S A. 2021 Jul 6;118(27): [PMID: 34187889]
Drug Discov Today. 2022 May;27(5):1284-1297 [PMID: 35085785]
Biopolymers. 2007 Nov;87(4):207-17 [PMID: 17680701]
Anal Chem. 2020 May 19;92(10):6806-6810 [PMID: 32347706]
Nat Chem Biol. 2021 Mar;17(3):237-245 [PMID: 33432239]
Q Rev Biophys. 2002 Nov;35(4):369-430 [PMID: 12621861]
Nat Methods. 2020 Aug;17(8):844-851 [PMID: 32601425]
Annu Rev Phys Chem. 2011;62:279-99 [PMID: 21219138]
J Phys Chem Lett. 2021 Oct 7;12(39):9662-9671 [PMID: 34590866]
Sci Adv. 2016 Sep 28;2(9):e1600521 [PMID: 27704043]
Nat Commun. 2021 Dec 7;12(1):7097 [PMID: 34876556]
Mol Neurodegener. 2021 Aug 23;16(1):57 [PMID: 34425874]
J Phys Chem B. 2016 Mar 17;120(10):2824-8 [PMID: 26906967]
Light Sci Appl. 2019 Dec 11;8:116 [PMID: 31839936]
Methods Enzymol. 2016;579:51-86 [PMID: 27572723]
Anal Biochem. 2000 Jan 15;277(2):167-76 [PMID: 10625503]
J Phys Chem B. 2022 Jul 14;126(27):5024-5032 [PMID: 35766112]
Cell Stem Cell. 2019 Mar 7;24(3):363-375.e9 [PMID: 30686764]
J Phys Chem B. 2017 Sep 21;121(37):8838-8846 [PMID: 28741348]
Nat Commun. 2022 Dec 15;13(1):7767 [PMID: 36522316]
ACS Chem Neurosci. 2018 Mar 21;9(3):404-420 [PMID: 29308873]
Front Neurosci. 2020 Jul 29;14:742 [PMID: 32848541]
Nat Rev Neurosci. 2016 Jan;17(1):5-21 [PMID: 26631930]
Mol Cell. 2021 Oct 21;81(20):4209-4227.e12 [PMID: 34453888]
J Mol Biol. 1997 Oct 31;273(3):729-39 [PMID: 9356260]
Neuron. 2014 Jun 18;82(6):1271-88 [PMID: 24857020]
Nature. 2021 Oct;598(7880):359-363 [PMID: 34588692]
Opt Express. 2019 Feb 4;27(3):2643-2655 [PMID: 30732299]
Biomed Opt Express. 2018 Apr 05;9(5):2130-2141 [PMID: 29760975]
Phys Biol. 2020 Feb 11;17(2):021001 [PMID: 31914432]
Methods Mol Biol. 2018;1777:69-81 [PMID: 29744828]
J Lipid Res. 2007 Aug;48(8):1846-56 [PMID: 17496269]
Biochemistry. 2008 Sep 30;47(39):10345-53 [PMID: 18771286]
Nature. 2016 Sep 14;537(7620):339-46 [PMID: 27629640]
Nat Neurosci. 2018 Jan;21(1):72-80 [PMID: 29273772]
Nat Protoc. 2015 Mar;10(3):382-96 [PMID: 25654756]
Science. 2020 Jan 24;367(6476):354-358 [PMID: 31974231]
Amyloid. 2006 Mar;13(1):20-3 [PMID: 16690496]
PLoS Genet. 2021 Nov 17;17(11):e1009921 [PMID: 34788284]
Phys Med Biol. 1999 Mar;44(3):781-99 [PMID: 10211810]
J Phys Chem Lett. 2021 Nov 18;12(45):11035-11041 [PMID: 34747175]
Brain Res Brain Res Rev. 2000 Aug;33(1):95-130 [PMID: 10967355]
Sci Adv. 2018 Nov 16;4(11):eaat7715 [PMID: 30456301]
Opt Express. 2023 Jan 30;31(3):4094-4107 [PMID: 36785385]
PLoS Biol. 2009 Feb 17;7(2):e34 [PMID: 19226187]
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 1):061904 [PMID: 22304113]
Neuron. 2015 May 6;86(3):632-45 [PMID: 25950632]
Biopolymers. 2008 May;89(5):392-400 [PMID: 17896349]
Opt Express. 2022 Aug 29;30(18):32808-32821 [PMID: 36242335]
Curr Protoc Protein Sci. 2012 Nov;Chapter 17:17.14.1-17.14.18 [PMID: 23151743]
Analyst. 2015 Aug 7;140(15):4967-80 [PMID: 26042229]
Analyst. 2013 Jul 21;138(14):3991-7 [PMID: 23586070]
Acta Neuropathol. 2019 Feb;137(2):259-277 [PMID: 30465259]
Curr Opin Struct Biol. 2020 Oct;64:17-25 [PMID: 32603876]
Methods Enzymol. 2011;493:21-60 [PMID: 21371586]
Sci Adv. 2021 May 14;7(20): [PMID: 33990332]
Sci Adv. 2019 Jul 19;5(7):eaav7127 [PMID: 31334347]
Adv Sci (Weinh). 2020 Feb 07;7(6):1903004 [PMID: 32195099]
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7717-22 [PMID: 22547798]
J Mol Biol. 2008 Oct 31;383(1):214-23 [PMID: 18775438]
Biophys Rev. 2018 Aug;10(4):1133-1149 [PMID: 29855812]
Science. 2005 Jan 14;307(5707):262-5 [PMID: 15653506]
Nature. 2017 Jan 12;541(7636):217-221 [PMID: 28052060]

Grants

  1. P41 EB031772/NIBIB NIH HHS
  2. R35 GM136223/NIGMS NIH HHS

Word Cloud

Similar Articles

Cited By