Using cortico-cerebellar structural patterns to classify early- and late-trained musicians.

Joseph J Shenker, Christopher J Steele, Robert J Zatorre, Virginia B Penhune
Author Information
  1. Joseph J Shenker: Department of Psychology, Concordia University, Montreal, Quebec, Canada. ORCID
  2. Christopher J Steele: Department of Psychology, Concordia University, Montreal, Quebec, Canada. ORCID
  3. Robert J Zatorre: BRAMS: International Laboratory for Brain, Music, and Sound Research, Montreal, Quebec, Canada. ORCID
  4. Virginia B Penhune: Department of Psychology, Concordia University, Montreal, Quebec, Canada. ORCID

Abstract

A body of current evidence suggests that there is a sensitive period for musical training: people who begin training before the age of seven show better performance on tests of musical skill, and also show differences in brain structure-especially in motor cortical and cerebellar regions-compared with those who start later. We used support vector machine models-a subtype of supervised machine learning-to investigate distributed patterns of structural differences between early-trained (ET) and late-trained (LT) musicians and to better understand the age boundaries of the sensitive period for early musicianship. After selecting regions of interest from the cerebellum and cortical sensorimotor regions, we applied recursive feature elimination with cross-validation to produce a model which optimally and accurately classified ET and LT musicians. This model identified a combination of 17 regions, including 9 cerebellar and 8 sensorimotor regions, and maintained a high accuracy and sensitivity (true positives, i.e., ET musicians) without sacrificing specificity (true negatives, i.e., LT musicians). Critically, this model-which defined ET musicians as those who began their training before the age of 7-outperformed all other models in which age of start was earlier or later (between ages 5-10). Our model's ability to accurately classify ET and LT musicians provides additional evidence that musical training before age 7 affects cortico-cerebellar structure in adulthood, and is consistent with the hypothesis that connected brain regions interact during development to reciprocally influence brain and behavioral maturation.

Keywords

References

  1. Neuroimage. 2014 Jul 15;95:217-31 [PMID: 24657354]
  2. Neuroimage. 2006 Jul 15;31(4):1453-74 [PMID: 16571375]
  3. Nat Rev Neurosci. 2007 Jul;8(7):547-58 [PMID: 17585307]
  4. Neural Netw. 1999 Jul;12(6):783-789 [PMID: 12662656]
  5. Front Psychol. 2011 Jul 07;2:156 [PMID: 21779271]
  6. J Cogn Neurosci. 2014 Apr;26(4):755-67 [PMID: 24236696]
  7. Brain. 2008 Mar;131(Pt 3):681-9 [PMID: 18202106]
  8. Brain Struct Funct. 2022 Jan;227(1):407-419 [PMID: 34657166]
  9. ScientificWorldJournal. 2014;2014:795624 [PMID: 25295306]
  10. Hum Brain Mapp. 2023 Aug 15;44(12):4512-4522 [PMID: 37326147]
  11. Dev Cogn Neurosci. 2011 Jan;1(1):7-21 [PMID: 22436416]
  12. Front Neurosci. 2019 Oct 30;13:1165 [PMID: 31736698]
  13. Front Psychol. 2018 Apr 05;9:426 [PMID: 29674984]
  14. Ann N Y Acad Sci. 2009 Jul;1169:543-57 [PMID: 19673837]
  15. Sci Rep. 2017 Oct 9;7(1):12841 [PMID: 28993670]
  16. Cereb Cortex. 2017 May 1;27(5):2768-2778 [PMID: 27166170]
  17. Neuroimage. 2012 Feb 1;59(3):2362-73 [PMID: 21945694]
  18. Brain. 2018 Sep 1;141(9):2644-2654 [PMID: 30052807]
  19. Neuroradiology. 2009 Feb;51(2):73-83 [PMID: 18846369]
  20. PLoS One. 2019 Apr 25;14(4):e0216119 [PMID: 31022272]
  21. Bioinformatics. 2000 Oct;16(10):906-14 [PMID: 11120680]
  22. Neuroimage. 2016 Jan 15;125:267-279 [PMID: 26463175]
  23. J Neurosci. 2010 Jun 16;30(24):8332-41 [PMID: 20554884]
  24. Cereb Cortex. 2019 Aug 14;29(9):3879-3890 [PMID: 30357317]
  25. Neuroimage. 2016 Feb 1;126:106-19 [PMID: 26584868]
  26. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8174-9 [PMID: 15148381]
  27. Exp Brain Res. 2010 Jul;204(1):91-101 [PMID: 20508918]
  28. Nat Neurosci. 1999 Oct;2(10):861-3 [PMID: 10491603]
  29. J Neurosci. 2003 Sep 10;23(23):8432-44 [PMID: 12968006]
  30. Annu Rev Psychol. 2015 Jan 3;66:173-96 [PMID: 25251488]
  31. J Neurosci. 2013 Jan 16;33(3):1282-90 [PMID: 23325263]
  32. Curr Top Behav Neurosci. 2022;53:167-188 [PMID: 34435343]
  33. Neuroimage. 2010 Jan 1;49(1):63-70 [PMID: 19683586]
  34. Neuroimage. 2015 Apr 1;109:130-9 [PMID: 25583606]
  35. Cereb Cortex. 2017 Nov 1;27(11):5170-5184 [PMID: 27733542]
  36. Hum Brain Mapp. 2013 Oct;34(10):2635-54 [PMID: 22611030]
  37. BMC Bioinformatics. 2018 Nov 19;19(1):432 [PMID: 30453885]
  38. Front Hum Neurosci. 2009 Oct 23;3:32 [PMID: 19893761]
  39. Front Neurosci. 2013 Nov 29;7:227 [PMID: 24348323]
  40. Ann N Y Acad Sci. 2005 Dec;1060:395-9 [PMID: 16597791]
  41. Neuroimage. 2021 Sep;238:118251 [PMID: 34116147]
  42. Science. 1995 Feb 3;267(5198):699-701 [PMID: 7839149]
  43. Hum Brain Mapp. 1997;5(3):206-15 [PMID: 20408216]
  44. Exp Brain Res. 2007 Jan;176(2):332-40 [PMID: 16896980]
  45. J Cogn Neurosci. 2010 Nov;22(11):2663-76 [PMID: 19925191]
  46. Biometrics. 1977 Mar;33(1):159-74 [PMID: 843571]

MeSH Term

Humans
Child
Music
Brain
Cerebellum
Motor Cortex

Word Cloud

Created with Highcharts 10.0.0musiciansageETregionsLTsensitiveperiodmusicaltrainingbrainmachineevidenceshowbetterdifferencescorticalcerebellarstartlatersupportvectorpatternsstructurallate-trainedsensorimotormodelaccuratelytrueieclassifycortico-cerebellarbodycurrentsuggeststraining:peoplebeginsevenperformancetestsskillalsostructure-especiallymotorregions-comparedusedmodels-asubtypesupervisedlearning-toinvestigatedistributedearly-trainedunderstandboundariesearlymusicianshipselectinginterestcerebellumappliedrecursivefeatureeliminationcross-validationproduceoptimallyclassifiedidentifiedcombination17including98maintainedhighaccuracysensitivitypositiveswithoutsacrificingspecificitynegativesCriticallymodel-whichdefinedbegan7-outperformedmodelsearlierages5-10model'sabilityprovidesadditional7affectsstructureadulthoodconsistenthypothesisconnectedinteractdevelopmentreciprocallyinfluencebehavioralmaturationUsingearly-experiencemusicplasticity

Similar Articles

Cited By