Present and future outlooks on environmental DNA-based methods for antibiotic discovery.

Adam F Rosenzweig, Ján Burian, Sean F Brady
Author Information
  1. Adam F Rosenzweig: Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
  2. Ján Burian: Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
  3. Sean F Brady: Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA. Electronic address: sbrady@rockefeller.edu.

Abstract

Novel antibiotics are in constant demand to combat a global increase in antibiotic-resistant infections. Bacterial natural products have been a long-standing source of antibiotic compounds, and metagenomic mining of environmental DNA (eDNA) has increasingly provided new antibiotic leads. The metagenomic small-molecule discovery pipeline can be divided into three main steps: surveying eDNA, retrieving a sequence of interest, and accessing the encoded natural product. Improvements in sequencing technology, bioinformatic algorithms, and methods for converting biosynthetic gene clusters into small molecules are steadily increasing our ability to discover metagenomically encoded antibiotics. We predict that, over the next decade, ongoing technological improvements will dramatically increase the rate at which antibiotics are discovered from metagenomes.

References

  1. Appl Environ Microbiol. 2010 Apr;76(8):2445-50 [PMID: 20173072]
  2. Front Microbiol. 2019 Apr 15;10:780 [PMID: 31037068]
  3. Angew Chem Int Ed Engl. 2021 Oct 4;60(41):22172-22177 [PMID: 34355488]
  4. Microb Genom. 2019 Dec;5(12): [PMID: 30946645]
  5. Science. 2002 May 10;296(5570):1127-9 [PMID: 12004133]
  6. Adv Sci (Weinh). 2020 Jul 21;7(17):2001616 [PMID: 32995136]
  7. ACS Synth Biol. 2020 Sep 18;9(9):2418-2426 [PMID: 32818377]
  8. Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11615-11620 [PMID: 29078342]
  9. J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):155-76 [PMID: 26739136]
  10. Nat Biotechnol. 2017 Sep 12;35(9):833-844 [PMID: 28898207]
  11. Curr Opin Microbiol. 2014 Jun;19:70-75 [PMID: 25000402]
  12. J Am Chem Soc. 2019 Oct 9;141(40):15737-15741 [PMID: 31545899]
  13. Science. 2022 May 27;376(6596):991-996 [PMID: 35617397]
  14. Sci Rep. 2020 Aug 12;10(1):13588 [PMID: 32788623]
  15. PLoS Comput Biol. 2014 Dec 04;10(12):e1004016 [PMID: 25474254]
  16. Nucleic Acids Res. 2021 Jan 8;49(D1):D751-D763 [PMID: 33119741]
  17. Front Microbiol. 2018 Nov 27;9:2924 [PMID: 30542340]
  18. Microb Genom. 2023 Jan;9(1): [PMID: 36748454]
  19. Nat Microbiol. 2018 Apr;3(4):415-422 [PMID: 29434326]
  20. iScience. 2021 May 04;24(5):102512 [PMID: 34041453]
  21. Microbiome. 2020 Sep 16;8(1):134 [PMID: 32938501]
  22. Annu Rev Microbiol. 2011;65:431-53 [PMID: 21682647]
  23. J Nat Prod. 2020 Mar 27;83(3):770-803 [PMID: 32162523]
  24. Nat Microbiol. 2022 Jan;7(1):120-131 [PMID: 34949828]
  25. Microbiome. 2019 May 22;7(1):78 [PMID: 31118083]
  26. Metab Eng. 2020 Jul;60:37-44 [PMID: 32224263]
  27. Nat Methods. 2022 Jul;19(7):823-826 [PMID: 35789207]
  28. Acc Chem Res. 2021 Mar 16;54(6):1374-1384 [PMID: 33600149]
  29. mSystems. 2022 Dec 20;7(6):e0063222 [PMID: 36445112]
  30. Comput Struct Biotechnol J. 2021 Mar 07;19:1497-1511 [PMID: 33815688]
  31. Curr Microbiol. 2022 Oct 6;79(11):336 [PMID: 36201117]
  32. Nat Methods. 2023 Jan;20(1):30-31 [PMID: 36635540]
  33. Nucleic Acids Res. 2023 Jan 6;51(D1):D29-D38 [PMID: 36370100]
  34. RSC Chem Biol. 2021 Feb 2;2(2):556-567 [PMID: 34458799]
  35. Chem Biol. 2014 Sep 18;21(9):1211-23 [PMID: 25237864]
  36. J Mol Microbiol Biotechnol. 2001 Apr;3(2):301-8 [PMID: 11321587]
  37. Genome Res. 2023 Apr;33(4):612-621 [PMID: 37041035]
  38. Nucleic Acids Res. 2021 Jan 8;49(D1):D121-D124 [PMID: 33166387]
  39. Nat Prod Rep. 2021 Mar 4;38(2):301-306 [PMID: 33533785]
  40. Front Microbiol. 2020 Dec 07;11:585398 [PMID: 33365020]
  41. Br J Nurs. 2019 Mar 14;28(5):284-286 [PMID: 30907644]
  42. Brief Bioinform. 2018 Sep 28;19(5):1022-1034 [PMID: 28398567]
  43. J Nat Prod. 2021 Apr 23;84(4):1056-1066 [PMID: 33621083]
  44. Nat Commun. 2019 Aug 26;10(1):3848 [PMID: 31451725]
  45. Nat Commun. 2020 Nov 27;11(1):6058 [PMID: 33247171]
  46. J Am Chem Soc. 2021 Apr 21;143(15):5917-5927 [PMID: 33823110]
  47. mSystems. 2018 Mar 13;3(2): [PMID: 29556536]
  48. Annu Rev Biochem. 2021 Jun 20;90:763-788 [PMID: 33848426]
  49. Front Genet. 2020 Sep 08;11:516269 [PMID: 33101371]
  50. Nat Prod Rep. 2021 Jan 1;38(1):24-82 [PMID: 32672280]
  51. ACS Synth Biol. 2017 Jan 20;6(1):39-44 [PMID: 27478992]
  52. ISME J. 2022 Jan;16(1):101-111 [PMID: 34253854]
  53. Biopolymers. 2010 Sep;93(9):833-44 [PMID: 20577994]
  54. Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4221-6 [PMID: 25831524]
  55. Nat Biotechnol. 2023 May;41(5):626-630 [PMID: 36411313]
  56. mSystems. 2021 Jun 29;6(3):e0111620 [PMID: 34100635]
  57. Appl Microbiol Biotechnol. 2022 Apr;106(8):3293-3306 [PMID: 35435454]
  58. Commun Biol. 2021 Nov 18;4(1):1302 [PMID: 34795375]
  59. mSystems. 2020 Sep 15;5(5): [PMID: 32934119]
  60. Nat Rev Drug Discov. 2021 Mar;20(3):200-216 [PMID: 33510482]
  61. Nucleic Acids Res. 2021 Jul 2;49(W1):W29-W35 [PMID: 33978755]
  62. Methods Mol Biol. 2022;2489:129-155 [PMID: 35524049]

Grants

  1. R35 GM122559/NIGMS NIH HHS

MeSH Term

Anti-Bacterial Agents
DNA, Environmental
Bacteria
Metagenomics
Biological Products
Multigene Family

Chemicals

Anti-Bacterial Agents
DNA, Environmental
Biological Products

Word Cloud

Created with Highcharts 10.0.0antibioticsantibioticincreasenaturalmetagenomicenvironmentaleDNAdiscoveryencodedmethodsNovelconstantdemandcombatglobalantibiotic-resistantinfectionsBacterialproductslong-standingsourcecompoundsminingDNAincreasinglyprovidednewleadssmall-moleculepipelinecandividedthreemainsteps:surveyingretrievingsequenceinterestaccessingproductImprovementssequencingtechnologybioinformaticalgorithmsconvertingbiosyntheticgeneclusterssmallmoleculessteadilyincreasingabilitydiscovermetagenomicallypredictnextdecadeongoingtechnologicalimprovementswilldramaticallyratediscoveredmetagenomesPresentfutureoutlooksDNA-based

Similar Articles

Cited By