Task integration in complex, bimanual sequence learning tasks.

Patrick Beißel, Stefan Künzell
Author Information
  1. Patrick Beißel: Institute of Sports Sciences, University of Augsburg, Universitätsstraße 3, 86135, Augsburg, Germany. patrick.beissel@uni-a.de. ORCID
  2. Stefan Künzell: Institute of Sports Sciences, University of Augsburg, Universitätsstraße 3, 86135, Augsburg, Germany. ORCID

Abstract

Sequence learning and multitasking studies have largely focused on simple motor skills, which cannot be directly transferred to the plethora of complex skills found outside of laboratory conditions. Established theories e.g. for bimanual tasks and task integration thus have to be reassessed in the context of complex motor skills. We hypothesize that under more complex conditions, task integration facilitates motor learning, impedes or suppresses effector-specific learning and can still be observed despite partial secondary task interference. We used the Ξ-apparatus to assess the learning success of six groups in a bimanual dual-task, in which we manipulated the degree of possible integration between the right-hand and the left-hand sequences. We could show that task integration positively influences the learning of these complex, bimanual skills. However, the integration impedes but not fully suppresses effector-specific learning, as we could measure reduced hand-specific learning. Task integration improves learning despite the disruptive effect of partial secondary task interference, but its mitigating effect is only effective to some extent. Overall, the results suggest that previous insights on sequential motor learning and task integration can largely also be applied to complex motor skills.

References

  1. J Neurosci. 2010 Jan 13;30(2):650-4 [PMID: 20071529]
  2. Psychol Bull. 2018 Jun;144(6):557-583 [PMID: 29517261]
  3. Neuroimage. 2009 Jul 15;46(4):1105-13 [PMID: 19306929]
  4. Exp Psychol. 2016 Nov;63(6):318-325 [PMID: 28059029]
  5. Psychon Bull Rev. 2013 Oct;20(5):1005-10 [PMID: 23444106]
  6. Brain Cogn. 1993 Mar;21(2):163-80 [PMID: 8442933]
  7. Neuropsychology. 2003 Jul;17(3):507-16 [PMID: 12959516]
  8. J Exp Psychol Learn Mem Cogn. 2014 Nov;40(6):1680-700 [PMID: 24749962]
  9. J Appl Psychol. 2009 May;94(3):678-91 [PMID: 19450006]
  10. J Neurosci. 2010 Oct 20;30(42):13977-82 [PMID: 20962219]
  11. Psychol Res. 2005 Jun;69(5-6):369-82 [PMID: 15856286]
  12. J Neurophysiol. 2005 Mar;93(3):1209-22 [PMID: 15525809]
  13. Psychol Res. 2019 Apr;83(3):526-543 [PMID: 28951973]
  14. Front Psychol. 2017 Mar 15;8:398 [PMID: 28360878]
  15. Mem Cognit. 2021 Feb;49(2):340-349 [PMID: 33033948]
  16. J Neurosci. 2014 Apr 2;34(14):5054-64 [PMID: 24695723]
  17. J Exp Psychol Gen. 2009 May;138(2):270-90 [PMID: 19397384]
  18. Psychol Rev. 2003 Apr;110(2):316-39 [PMID: 12747526]
  19. J Vis Exp. 2018 May 3;(135): [PMID: 29781982]
  20. Psychol Res. 1996;59(2):119-33 [PMID: 8810586]
  21. Psychol Res. 2018 Jan;82(1):12-23 [PMID: 29086021]
  22. Psychol Res. 2022 Apr;86(3):952-967 [PMID: 33885955]
  23. Psychol Res. 2005 Mar;69(4):242-51 [PMID: 15235913]
  24. Learn Mem. 2006 Sep-Oct;13(5):580-3 [PMID: 16980543]
  25. Psychol Res. 2007 Jul;71(4):383-92 [PMID: 16397812]
  26. Front Psychol. 2010 Dec 23;1:230 [PMID: 21833285]
  27. Acta Psychol (Amst). 2020 Apr;205:103043 [PMID: 32143063]
  28. Cognition. 2021 Apr;209:104530 [PMID: 33383469]
  29. Adv Cogn Psychol. 2012;8(2):165-78 [PMID: 22723815]
  30. J Cogn. 2021 Jan 07;4(1):1 [PMID: 33506167]
  31. Psychol Res. 2004 Feb;68(1):64-70 [PMID: 12955505]
  32. Trends Cogn Sci. 2004 Jan;8(1):18-25 [PMID: 14697399]
  33. J Neurosci. 2007 Sep 19;27(38):10073-5 [PMID: 17881512]
  34. Eur J Neurosci. 2012 Sep;36(5):2710-5 [PMID: 22758604]
  35. Psychon Bull Rev. 2002 Jun;9(2):185-211 [PMID: 12120783]
  36. Motor Control. 2002 Apr;6(2):166-82 [PMID: 12122225]
  37. Behav Res Methods. 2007 May;39(2):175-91 [PMID: 17695343]
  38. Adv Exp Med Biol. 2014;826:101-24 [PMID: 25330888]
  39. Am Psychol. 1988 Mar;43(3):151-60 [PMID: 3364852]
  40. Psychol Res. 2018 Jan;82(1):4-11 [PMID: 29098444]
  41. Psychol Res. 2008 Mar;72(2):138-54 [PMID: 17091260]
  42. Psychon Bull Rev. 2010 Oct;17(5):603-23 [PMID: 21037157]
  43. J Exp Psychol Learn Mem Cogn. 2012 Sep;38(5):1389-407 [PMID: 22545612]
  44. J Neuroeng Rehabil. 2019 Oct 18;16(1):121 [PMID: 31627755]
  45. J Exp Psychol Learn Mem Cogn. 1996 Mar;22(2):350-64 [PMID: 8901340]
  46. Psychon Bull Rev. 2001 Jun;8(2):343-50 [PMID: 11495124]
  47. Learn Mem. 2007 Mar 08;14(3):167-76 [PMID: 17351140]
  48. Trends Cogn Sci. 2020 May;24(5):375-387 [PMID: 32298623]
  49. J Exp Psychol Learn Mem Cogn. 2009 Jul;35(4):890-904 [PMID: 19586259]
  50. Front Psychol. 2018 Jun 25;9:1031 [PMID: 29988541]
  51. Exp Brain Res. 2000 May;132(2):149-62 [PMID: 10853941]
  52. Cogn Res Princ Implic. 2021 Jan 4;6(1):1 [PMID: 33398471]

MeSH Term

Humans
Functional Laterality
Learning
Motor Skills
Hand
Psychomotor Performance

Word Cloud

Created with Highcharts 10.0.0learningintegrationcomplextaskmotorskillsbimanuallargelyconditionstasksimpedessuppresseseffector-specificcandespitepartialsecondaryinterferenceTaskeffectSequencemultitaskingstudiesfocusedsimpledirectlytransferredplethorafoundoutsidelaboratoryEstablishedtheoriesegthusreassessedcontexthypothesizefacilitatesstillobservedusedΞ-apparatusassesssuccesssixgroupsdual-taskmanipulateddegreepossibleright-handleft-handsequencesshowpositivelyinfluencesHoweverfullymeasurereducedhand-specificimprovesdisruptivemitigatingeffectiveextentOverallresultssuggestpreviousinsightssequentialalsoappliedsequence

Similar Articles

Cited By