Polymeric nanoparticles for DNA vaccine-based cancer immunotherapy: a review.

Mohsen Danaeifar, Babak Negahdari, Houra Mobaleghol Eslam, Hamed Zare, Momeneh Ghanaat, Sekinehe Shokouhi Koushali, Ziba Veisi Malekshahi
Author Information
  1. Mohsen Danaeifar: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
  2. Babak Negahdari: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
  3. Houra Mobaleghol Eslam: Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
  4. Hamed Zare: Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
  5. Momeneh Ghanaat: Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
  6. Sekinehe Shokouhi Koushali: Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
  7. Ziba Veisi Malekshahi: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran. ziba.malekshahi@gmail.com. ORCID

Abstract

Cancer is one of the leading causes of death and mortality in the world. There is an essential need to develop new drugs or therapeutic approaches to manage treatment-resistant cancers. Cancer immunotherapy is a type of cancer treatment that uses the power of the body's immune system to prevent, control, and eliminate cancer. One of the materials used as a vaccine in immunotherapy is DNA. The application of polymeric nanoparticles as carriers for DNA vaccines could be an effective therapeutic approach to activate immune responses and increase antigen presentation efficiency. Various materials have been used as polymeric nanoparticles, including: chitosan, poly (lactic-co-glycolic acid), Polyethylenimine, dendrimers, polypeptides, and polyesters. Application of these polymer nanoparticles has several advantages, including increased vaccine delivery, enhanced antigen presentation, adjuvant effects, and more sustainable induction of the immune system. Besides many clinical trials and commercial products that were developed based on polymer nanoparticles, there is still a need for more comprehensive studies to increase the DNA vaccine efficiency in cancer immunotherapy using this type of carrier.

Keywords

References

  1. Abelev B, Adam J, Adamová D, Aggarwal MM, Rinella GA, Agnello M et al (2014) Exclusive J/ψ photoproduction off Protons in Ultraperipheral p-Pb collisions at s NN = 5.02 TeV. Phys Rev Lett 113(23):232504 [PMID: 25526123]
  2. Agadjanyan MG, Ghochikyan A, Petrushina I, Vasilevko V, Movsesyan N, Mkrtichyan M et al (2005) Prototype Alzheimer’s disease vaccine using the immunodominant B cell epitope from β-amyloid and promiscuous T cell epitope pan HLA DR-binding peptide. J Immunol 174(3):1580–1586 [PMID: 15661919]
  3. Ai W, Yue Y, Xiong S, Xu W (2013) Enhanced protection against pulmonary mycobacterial challenge by chitosan-formulated polyepitope gene vaccine is associated with increased pulmonary secretory IgA and gamma‐interferon + T cell responses. Microbiol Immunol 57(3):224–235 [PMID: 23489083]
  4. Akinc A, Thomas M, Klibanov AM, Langer R (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7(5):657–663 [PMID: 15543529]
  5. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515 [PMID: 18672949]
  6. Alford A, Tucker B, Kozlovskaya V, Chen J, Gupta N, Caviedes R et al (2018) Encapsulation and ultrasound-triggered release of G-quadruplex DNA in multilayer hydrogel microcapsules. Polymers 10(12):1342 [PMID: 30961267]
  7. Ascierto PA, Daniele B, Hammers H, Hirsh V, Kim J, Licitra L et al (2017) Perspectives in immunotherapy: meeting report from the “Immunotherapy Bridge”, Napoli, Nov 30th 2016. Springer
  8. Banik BL, Fattahi P, Brown JL (2016) Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev 8(2):271–299
  9. Barouch DH (2006) Rational design of gene-based vaccines. J Pathol 208(2):283–289 [PMID: 16362986]
  10. Behnaz N, Karizi SZ, Nazarian S, Kazemi R, Motamedi MJ, Fasihi-Ramandi M et al (2019) Construction and Structural Assessment of Nanocapsule containing HER2-MUC1 chimeric protein as a candidate for a vaccine against breast Cancer. Int J Cancer Manag 12(5):8
  11. Bhavsar MD, Amiji MM (2007) Gastrointestinal distribution and in vivo gene transfection studies with nanoparticles-in-microsphere oral system (NiMOS). J Controll Release 119(3):339–348 [DOI: 10.1016/j.jconrel.2007.03.006]
  12. Bivas-Benita M, Laloup M, Versteyhe S, Dewit J, De Braekeleer J, Jongert E et al (2003) Generation of Toxoplasma gondii GRA1 protein and DNA vaccine loaded chitosan particles: preparation, characterization, and preliminary in vivo studies. Int J Pharm 266(1–2):17–27 [PMID: 14559390]
  13. Bolhassani A, Yazdi SR (2009) DNA immunization as an efficient strategy for vaccination. Avicenna J Med Biotechnol 1(2):71 [PMID: 23407787]
  14. Bolhassani A, Safaiyan S, Rafati S (2011) Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer 10(1):3 [PMID: 21211062]
  15. Bramwell VW, Perrie Y (2005) Particulate delivery systems for vaccines. Crit Rev Ther Drug Carr Syst 22(2)
  16. Brown DM, Lampe AT, Farris E, Williams JA, Pannier AK (2017) Chitosan nanoparticle delivery of Influenza A Virus DNA vaccine enhances antibody class switching and abrogates weight loss post IAV challenge. J Immunol 198(1Supplement):147143–147143
  17. Bueter CL, Lee CK, Wang JP, Ostroff GR, Specht CA, Levitz SM (2014) Spectrum and mechanisms of inflammasome activation by chitosan. J Immunol 192(12):5943–5951 [PMID: 24829412]
  18. Carroll EC, Jin L, Mori A, Muñoz-Wolf N, Oleszycka E, Moran HB et al (2016) The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 44(3):597–608 [PMID: 26944200]
  19. Chen YZ, Yao XL, Ruan GX, Zhao QQ, Tang GP, Tabata Y et al (2012) Gene-carried chitosan‐linked polyethylenimine induced high gene transfection efficiency on dendritic cells. Biotechnol Appl Chem 59(5):346–352
  20. Chen C, Hou Z, Chen S, Guo J, Chen Z, Hu J et al (2022) Photothermally responsive smart elastomer composites based on aliphatic polycarbonate backbone for biomedical applications. Compos Part B: Eng 240:109985 [DOI: 10.1016/j.compositesb.2022.109985]
  21. Cheng W-F, Hung C-F, Chai C-Y, Hsu K-F, He L, Ling M et al (2001) Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Investig 108(5):669–678 [PMID: 11544272]
  22. Cherif MS, Mbanefo EC, Shuaibu MN, Kodama Y, Avenido EF, Campos-Alberto E et al (2016) Human-applicable dendrigraft poly-l-lysine-based nanoparticle-coated Plasmodium yoelii-transamidase DNA vaccine is immunogenic and protective as the polyethylenimine-based formulation. J Bioactive Compatible Polym 31(4):334–347 [DOI: 10.1177/0883911515614011]
  23. Cho H-J, Han S-E, Im S, Lee Y, Kim YB, Chun T et al (2011) Maltosylated polyethylenimine-based triple nanocomplexes of human papillomavirus 16L1 protein and DNA as a vaccine co-delivery system. Biomaterials 32(20):4621–4629 [PMID: 21440296]
  24. Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17(3):313 [PMID: 21386835]
  25. Cui L, Osada K, Imaizumi A, Kataoka K, Nakano K (2015) Feasibility of a subcutaneously administered block/homo-mixed polyplex micelle as a carrier for DNA vaccination in a mouse tumor model. J Controll Release 206:220–231 [DOI: 10.1016/j.jconrel.2015.03.029]
  26. Daftarian P, Kaifer AE, Li W, Blomberg BB, Frasca D, Roth F et al (2011) Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigen-presenting cells. Cancer Res 71(24):7452–7462 [PMID: 21987727]
  27. Danaeifar M (2022a) New horizons in developing cell lysis methods: a review. Biotechnol Bioeng 119(11):3007–3021 [PMID: 35900072]
  28. Danaeifar M (2022b) Recent advances in gene therapy: genetic bullets to the root of the problem. Clin Exp Med 1–15
  29. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Controll Release 161(2):505–522 [DOI: 10.1016/j.jconrel.2012.01.043]
  30. Dastan T, Turan K (2004) In vitro characterization and delivery of chitosan-DNA microparticles into mammalian cells. J Pharm Pharm Sci 7(2):205–214 [PMID: 15367377]
  31. Deirram N, Zhang C, Kermaniyan SS, Johnston AP, Such GK (2019) pH-responsive polymer nanoparticles for drug delivery. Macromol Rapid Commun 40(10):1800917 [DOI: 10.1002/marc.201800917]
  32. DeLong RK, Akhtar U, Sallee M, Parker B, Barber S, Zhang J et al (2009) Characterization and performance of nucleic acid nanoparticles combined with protamine and gold. Biomaterials 30(32):6451–6459 [PMID: 19726081]
  33. Eberl M, Langermans JA, Frost PA, Vervenne RA, van Dam GJ, Deelder AM et al (2001) Cellular and humoral immune responses and protection against schistosomes induced by a radiation-attenuated vaccine in chimpanzees. Infect Immun 69(9):5352–5362 [PMID: 11500405]
  34. Ebrahimian M, Taghavi S, Mokhtarzadeh A, Ramezani M, Hashemi M (2017) Co-delivery of doxorubicin encapsulated PLGA nanoparticles and Bcl-xL shRNA using alkyl-modified PEI into breast cancer cells. Appl Biochem Biotechnol 183(1):126–136 [PMID: 28236188]
  35. Farris E, Brown DM, Ramer-Tait AE, Pannier AK (2016) Micro-and nanoparticulates for DNA vaccine delivery. Exp Biol Med 241(9):919–929 [DOI: 10.1177/1535370216643771]
  36. Feng G, Jiang Q, Xia M, Lu Y, Qiu W, Zhao D et al (2013) Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection. PLoS ONE 8(4): e61135
  37. Feng S, Wang J, Zhang L, Chen Q, Yue W, Ke N et al (2020) Coumarin-containing light-responsive carboxymethyl chitosan micelles as nanocarriers for controlled release of pesticide. Polymers 12(10):2268 [PMID: 33019778]
  38. Finn OJ (2003) Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3(8):630–641 [PMID: 12974478]
  39. Fischer D, Bieber T, Li Y, Elsässer H-P, Kissel T (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 16(8):1273–1279 [PMID: 10468031]
  40. Fischer W, Quadir MA, Barnard A, Smith DK, Haag R (2011) Controlled release of DNA from photoresponsive hyperbranched polyglycerols with oligoamine shells. Macromol Biosci 11(12):1736–1746 [PMID: 22028095]
  41. Fu K, Pack DW, Klibanov AM, Langer R (2000) Visual evidence of acidic environment within degrading poly (lactic-co-glycolic acid)(PLGA) microspheres. Pharm Res 17(1):100–106 [PMID: 10714616]
  42. Furugaki K, Cui L, Kunisawa Y, Osada K, Shinkai K, Tanaka M et al (2014) Intraperitoneal administration of a tumor-associated antigen SART3, CD40L, and GM-CSF gene-loaded polyplex micelle elicits a vaccine effect in mouse tumor models. PLos ONE 9(7)
  43. Gao W, Lai JC, Leung S (2012) Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications. Front Physiol 3:321 [PMID: 22934070]
  44. Garaiova Z, Strand SP, Reitan NK, Lélu S, Størset S, Berg K et al (2012) Cellular uptake of DNA–chitosan nanoparticles: the role of clathrin-and caveolae-mediated pathways. Int J Biol Macromol 51(5):1043–1051 [PMID: 22947453]
  45. Garcia F, Petry KU, Muderspach L, Gold MA, Braly P, Crum CP et al (2004) ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 103(2):317–326 [PMID: 14754702]
  46. García M, Aloisio C, Onnainty R, Ullio-Gamboa G (2018) Self-assembled nanomaterials. Nanobiomaterials. Elsevier, pp 41–94
  47. Gordon JR, Ma Y, Churchman L, Gordon SA, Dawicki W (2014) Regulatory dendritic cells for immunotherapy in immunologic diseases. Front Immunol 5:7 [PMID: 24550907]
  48. Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z et al (2008) Co-delivery of cancer-associated antigen and toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8 + T cell-mediated anti-tumor immunity. Vaccine 26(39):5046–5057 [PMID: 18680779]
  49. Hanes J, Cleland JL, Langer R (1997) New advances in microsphere-based single-dose vaccines. Adv Drug Deliv Rev 28(1):97–119 [PMID: 10837567]
  50. Hong SJ, Ahn MH, Lee YW, Pal S, Sangshetti J, Arote RB (2018) Biodegradable polymeric nanocarrier-based immunotherapy in hepatitis vaccination. Cutting-Edge Enabling Technologies for Regenerative Medicine. Springer, pp 303–320
  51. Horo H, Das S, Mandal B, Kundu LM (2019) Development of a photoresponsive chitosan conjugated prodrug nano-carrier for controlled delivery of antitumor drug 5-fluorouracil. Int J Biol Macromol 121:1070–1076 [PMID: 30342947]
  52. Howard KA, Li XW, Somavarapu S, Singh J, Green N, Atuah KN et al (2004) Formulation of a microparticle carrier for oral polyplex-based DNA vaccines. Biochim et Biophys Acta (BBA) 1674(2):149–157 [PMID: 15374619]
  53. Hu W-W, Chen Y-J, Ruaan R-C, Chen W-Y, Cheng Y-C, Chien C-C (2014) The regulation of DNA adsorption and release through chitosan multilayers. Carbohydr Polym 99:394–402 [PMID: 24274523]
  54. Hu Y, Xu B, Xu J, Shou D, Liu E, Gao J et al (2015) Microneedle-assisted dendritic cell-targeted nanoparticles for transcutaneous DNA immunization. Polym Chem 6(3):373–379 [DOI: 10.1039/C4PY01394H]
  55. Huang Y (2019) Polymer chemistry. Polymer 10(15):1841–1980
  56. Jones D, Corris S, McDonald S, Clegg J, Farrar G (1997) Poly (DL-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine 15(8):814–817 [PMID: 9234522]
  57. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95):95ra73–95ra73 [PMID: 21832238]
  58. Kasturi SP, Sachaphibulkij K, Roy K (2005) Covalent conjugation of polyethyleneimine on biodegradable microparticles for delivery of plasmid DNA vaccines. Biomaterials 26(32):6375–6385 [PMID: 15913771]
  59. Kasturi SP, Qin H, Thomson KS, El-Bereir S, Cha S-c, Neelapu S et al (2006) Prophylactic anti-tumor effects in a B cell lymphoma model with DNA vaccines delivered on polyethylenimine (PEI) functionalized PLGA microparticles. J Controll Release 113(3):261–270 [DOI: 10.1016/j.jconrel.2006.04.006]
  60. Kim TH, Jin H, Kim HW, Cho M-H, Cho CS (2006) Mannosylated chitosan nanoparticle–based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells. Mol Cancer Ther 5(7):1723–1732 [PMID: 16891458]
  61. Kim H, Niu L, Larson P, Kucaba TA, Murphy KA, James BR et al (2018) Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials 164:38–53 [PMID: 29482062]
  62. Klencke B, Matijevic M, Urban RG, Lathey JL, Hedley ML, Berry M et al (2002) Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a phase I study of ZYC101. Clin Cancer Res 8(5):1028–1037 [PMID: 12006515]
  63. Koag M-C, Kou Y, Ouzon-Shubeita H, Lee S (2014) Transition-state destabilization reveals how human DNA polymerase β proceeds across the chemically unstable lesion N7-methylguanine. Nucleic Acids Res 42(13):8755–8766 [PMID: 24966350]
  64. Kodama Y, Nakamura T, Kurosaki T, Egashira K, Mine T, Nakagawa H et al (2014) Biodegradable nanoparticles composed of dendrigraft poly-L-lysine for gene delivery. Eur J Pharm Biopharm 87(3):472–479 [PMID: 24813391]
  65. Kokate RA, Chaudhary P, Sun X, Thamake SI, Maji S, Chib R et al (2016) Rationalizing the use of functionalized poly-lactic-co-glycolic acid nanoparticles for dendritic cell-based targeted anticancer therapy. Nanomedicine 11(5):479–494 [PMID: 26892440]
  66. Kou Y, Koag M-C, Lee S (2015) N7 methylation alters hydrogen-bonding patterns of guanine in duplex DNA. J Am Chem Soc 137(44):14067–14070 [PMID: 26517568]
  67. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B 75(1):1–18 [DOI: 10.1016/j.colsurfb.2009.09.001]
  68. Kunath K, von Harpe A, Fischer D, Petersen H, Bickel U, Voigt K et al (2003) Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Controll Release 89(1):113–125 [DOI: 10.1016/S0168-3659(03)00076-2]
  69. Layek B, Lipp L, Singh J (2015) APC targeted micelle for enhanced intradermal delivery of hepatitis B DNA vaccine. J Controll Release 207:143–153 [DOI: 10.1016/j.jconrel.2015.04.014]
  70. Li L, Schwendeman SP (2005) Mapping neutral microclimate pH in PLGA microspheres. J Controll Release 101(1–3):163–173 [DOI: 10.1016/j.jconrel.2004.07.029]
  71. Li X, Kong X, Shi S, Zheng X, Guo G, Wei Y et al (2008) Preparation of alginate coated chitosan microparticles for vaccine delivery. BMC Biotechnol 8(1):1–11 [DOI: 10.1186/1472-6750-8-89]
  72. Li G, Liu Z, Liao B, Zhong N (2009) Induction of Th1-type immune response by chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen Der p 2 for oral vaccination in mice. Cell Mol Immunol 6(1):45–50 [PMID: 19254479]
  73. Li W, Meng J, Ma X, Lin J, Lu X (2022) Advanced materials for the delivery of vaccines for infectious diseases. Biosaf Health
  74. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173 [PMID: 22432577]
  75. Lim M, Badruddoza AZM, Firdous J, Azad M, Mannan A, Al-Hilal TA et al (2020) Engineered nanodelivery systems to improve DNA vaccine technologies. Pharmaceutics 12(1):30 [PMID: 31906277]
  76. Lisziewicz J, Bakare N, Calarota SA, Bánhegyi D, Szlávik J, Ujhelyi E et al (2012) Single DermaVir immunization: dose-dependent expansion of precursor/memory T cells against all HIV antigens in HIV-1 infected individuals. PLoS ONE 7(5):e35416
  77. Liu MA (2019) A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines 7(2):37 [PMID: 31022829]
  78. Liu MA, Ulmer JB (2005) Human clinical trials of plasmid DNA vaccines. Adv Genet 55:25–40 [PMID: 16291211]
  79. Liu Z, Lv D, Liu S, Gong J, Wang D, Xiong M et al (2013) Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: effect against breast cancer in mice. PLoS ONE 8(4)
  80. Lopes A, Vandermeulen G, Préat V (2019) Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res 38(1):1–24 [DOI: 10.1186/s13046-019-1154-7]
  81. Lou PJ, Cheng WF, Chung YC, Cheng CY, Chiu LH, Young TH (2009) PMMA particle-mediated DNA vaccine for cervical cancer. J Biomed Mater Res Part A 88(4):849–857 [DOI: 10.1002/jbm.a.31919]
  82. Luzardo-Alvarez A, Blarer N, Peter K, Romero JF, Reymond C, Corradin G et al (2005) Biodegradable microspheres alone do not stimulate murine macrophages in vitro, but prolong antigen presentation by macrophages in vitro and stimulate a solid immune response in mice. J Controll Release 109(1–3):62–76 [DOI: 10.1016/j.jconrel.2005.09.015]
  83. Ma Y-F, Yang Y-W (2010) Delivery of DNA-based cancer vaccine with polyethylenimine. Eur J Pharm Sci 40(2):75–83 [PMID: 20304049]
  84. Ma W, Chen M, Kaushal S, McElroy M, Zhang Y, Ozkan C et al (2012) PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. Int J Nanomed 7:1475 [DOI: 10.2147/IJN.S29506]
  85. Matsueda S, Graham DY (2014) Immunotherapy in gastric cancer. World J Gastroenterol 20(7):1657 [PMID: 24587645]
  86. Mbanefo EC, Kumagai T, Kodama Y, Kurosaki T, Furushima-Shimogawara R, Cherif MS et al (2015) Immunogenicity and anti-fecundity effect of nanoparticle coated glutathione S-transferase (SjGST) DNA vaccine against murine Schistosoma japonicum infection. Parasitol Int 64(4):24–31 [PMID: 25603531]
  87. McKeever U, Barman S, Hao T, Chambers P, Song S, Lunsford L et al (2002) Protective immune responses elicited in mice by immunization with formulations of poly (lactide-co-glycolide) microparticles. Vaccine 20(11–12):1524–1531 [PMID: 11858858]
  88. Meerak J, Wanichwecharungruang SP, Palaga T (2013) Enhancement of immune response to a DNA vaccine against Mycobacterium tuberculosis Ag85B by incorporation of an autophagy inducing system. Vaccine 31(5):784–790 [PMID: 23228812]
  89. Melief CJ, van Hall T, Arens R, Ossendorp F, van der Burg SH (2015) Therapeutic cancer vaccines. J Clin Investig 125(9):3401–3412 [PMID: 26214521]
  90. Michalak G, Głuszek K, Piktel E, Deptuła P, Puszkarz I, Niemirowicz K et al (2016) Polymeric nanoparticles–a novel solution for delivery of antimicrobial agents. Med Stud/Studia Medyczne 32(1):56–62 [DOI: 10.5114/ms.2016.58807]
  91. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH et al (2016) Cancer treatment and survivorship statistics, 2016. Cancer J Clin 66(4):271–289 [DOI: 10.3322/caac.21349]
  92. Minigo G, Scholzen A, Tang CK, Hanley JC, Kalkanidis M, Pietersz GA et al (2007) Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine 25(7):1316–1327 [PMID: 17052812]
  93. Mohammadi Z, Abolhassani M, Dorkoosh F, Hosseinkhani S, Gilani K, Amini T et al (2011) Preparation and evaluation of chitosan–DNA–FAP-B nanoparticles as a novel non-viral vector for gene delivery to the lung epithelial cells. Int J Pharm 409(1–2):307–313 [PMID: 21356293]
  94. Mohit E, Bolhassani A, Zahedifard F, Seyed N, Eslamifar A, Taghikhani M et al (2013) Immunomodulatory effects of IP-10 chemokine along with PEI600-Tat delivery system in DNA vaccination against HPV infections. Mol Immunol 53(1–2):149–160 [PMID: 22926003]
  95. Mori A, Oleszycka E, Sharp FA, Coleman M, Ozasa Y, Singh M et al (2012) The vaccine adjuvant alum inhibits IL-12 by promoting PI 3 kinase signaling while chitosan does not inhibit IL‐12 and enhances T h1 and T h17 responses. Eur J Immunol 42(10):2709–2719 [PMID: 22777876]
  96. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003 [PMID: 24150417]
  97. Muzzarelli RA (2010) Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 8(2):292–312 [PMID: 20390107]
  98. Negash T, Liman M, Rautenschlein S (2013) Mucosal application of cationic poly (D, L-lactide-co-glycolide) microparticles as carriers of DNA vaccine and adjuvants to protect chickens against infectious bursal disease. Vaccine 31(36):3656–3662 [PMID: 23777953]
  99. Newman KD, Sosnowski DL, Kwon GS, Samuel J (1998) Delivery of MUC1 mucin peptide by poly (d, l-lactic‐co‐glycolic acid) microspheres induces type 1 T helper immune responses. J Pharm Sci 87(11):1421–1427 [PMID: 9811500]
  100. Nikitczuk KP, Schloss RS, Yarmush ML, Lattime EC (2013) PLGA-polymer encapsulating tumor antigen and CpG DNA administered into the tumor microenvironment elicits a systemic antigen-specific IFN-γ response and enhances survival. J Cancer Ther 4(1):280 [PMID: 23741626]
  101. Nitta SK, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14(1):1629–1654 [PMID: 23344060]
  102. O’Hagan DT, Singh M, Ulmer JB (2004) Microparticles for the delivery of DNA vaccines. Immunol Rev 199(1):191–200 [PMID: 15233735]
  103. Otten GR, Schaefer M, Doe B, Liu H, Srivastava I, zur Megede J et al (2005) Enhanced potency of plasmid DNA microparticle human immunodeficiency virus vaccines in rhesus macaques by using a priming-boosting regimen with recombinant proteins. J Virol 79(13):8189–8200 [PMID: 15956564]
  104. Pan C-H, Nair N, Adams RJ, Zink MC, Lee E-Y, Polack FP et al (2008) Dose-dependent protection against or exacerbation of disease by a polylactide glycolide microparticle-adsorbed, alphavirus-based measles virus DNA vaccine in rhesus macaques. Clin Vaccine Immunol 15(4):697–706 [PMID: 18287579]
  105. Pardi N, Hogan MJ, Porter FW, Weissman D (2018) mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov 17(4):261–279 [PMID: 29326426]
  106. Parhi P, Mohanty C, Sahoo SK (2012) Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today 17(17–18):1044–1052 [PMID: 22652342]
  107. Pathak RK, Wen R, Kolishetti N, Dhar S (2017) A prodrug of two approved drugs, cisplatin and chlorambucil, for chemo war against cancer. Mol Cancer Ther 16(4):625–636 [PMID: 28148716]
  108. Peppas NA (2019) Mathematical models for controlled release kinetics. Medical applications of controlled release. CRC Press, pp 169–188
  109. Petersen H, Fechner PM, Martin AL, Kunath K, Stolnik S, Roberts CJ et al (2002) Polyethylenimine-graft-poly (ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug Chem 13(4):845–854 [PMID: 12121141]
  110. Pilipenko I, Korzhikov-Vlakh V, Sharoyko V, Zhang N, Schäfer-Korting M, Rühl E et al (2019) pH-sensitive chitosan–heparin nanoparticles for effective delivery of genetic drugs into epithelial cells. Pharmaceutics 11(7):317 [PMID: 31284414]
  111. Poecheim J, Barnier-Quer C, Collin N, Borchard G (2016) Ag85A DNA vaccine delivery by nanoparticles: influence of the formulation characteristics on immune responses. Vaccines 4(3):32 [PMID: 27626449]
  112. Prabha S, Zhou W-Z, Panyam J, Labhasetwar V (2002) Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm 244(1–2):105–115 [PMID: 12204570]
  113. Prego C, Paolicelli P, Díaz B, Vicente S, Sánchez A, González-Fernández Á et al (2010) Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine 28(14):2607–2614 [PMID: 20096389]
  114. Qiao Y, Huang Y, Qiu C, Yue X, Deng L, Wan Y et al (2010) The use of PEGylated poly [2-(N, N-dimethylamino) ethyl methacrylate] as a mucosal DNA delivery vector and the activation of innate immunity and improvement of HIV-1-specific immune responses. Biomaterials 31(1):115–123 [PMID: 19781770]
  115. Rabu C, Rangan L, Florenceau L, Fortun A, Charpentier M, Dupré E et al (2019) Cancer vaccines: designing artificial synthetic long peptides to improve presentation of class I and class II T cell epitopes by dendritic cells.Oncoimmunology 8(4):e1560919
  116. Rejinold NS, Chennazhi K, Nair S, Tamura H, Jayakumar R (2011) Biodegradable and thermo-sensitive chitosan-g-poly (N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier. Carbohydr Polym 83(2):776–786 [DOI: 10.1016/j.carbpol.2010.08.052]
  117. Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA (2010) Polymeric particles in vaccine delivery. Curr Opin Microbiol 13(1):106–112 [PMID: 20079678]
  118. Romestand B, Rolland J-L, Commeyras A, Coussot G, Desvignes I, Pascal R et al (2010) Dendrigraft poly-L-lysine: a non-immunogenic synthetic carrier for antibody production. Biomacromolecules 11(5):1169–1173 [PMID: 20411927]
  119. Rosa SS, Prazeres DM, Azevedo AM, Marques MP (2021) mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine 39(16):2190–2200 [PMID: 33771389]
  120. Rosalia RA, Cruz LJ, van Duikeren S, Tromp AT, Silva AL, Jiskoot W et al (2015) CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials 40:88–97 [PMID: 25465442]
  121. Roy D, Brooks WL, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42(17):7214–7243 [PMID: 23450220]
  122. Saade F, Petrovsky N (2012) Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines 11(2):189–209 [PMID: 22309668]
  123. Saleh T, Bolhassani A, Shojaosadati SA, Aghasadeghi MR (2015) MPG-based nanoparticle: an efficient delivery system for enhancing the potency of DNA vaccine expressing HPV16E7. Vaccine 33(28):3164–3170 [PMID: 26001433]
  124. Saraswathy M, Gong S (2013) Different strategies to overcome multidrug resistance in cancer. Biotechnol Adv 31(8):1397–1407 [PMID: 23800690]
  125. Schmeer M, Buchholz T, Schleef M (2017) Plasmid DNA manufacturing for indirect and direct clinical applications. Hum Gene Ther 28(10):856–861 [PMID: 28826233]
  126. Seferian PG, Martinez ML (2000) Immune stimulating activity of two new chitosan containing adjuvant formulations. Vaccine 19(6):661–668 [PMID: 11090719]
  127. Segal R, Miller K, Jemal A (2018) Cancer statistics, 2018. Cancer J Clin 68(1):7–30 [DOI: 10.3322/caac.21442]
  128. Sharma S, Parmar A, Kori S, Sandhir R (2016) PLGA-based nanoparticles: a new paradigm in biomedical applications. TRAC Trends Anal Chem 80:30–40 [DOI: 10.1016/j.trac.2015.06.014]
  129. Sheets EE, Urban RG, Crum CP, Hedley ML, Politch JA, Gold MA et al (2003) Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. Am J Obstet Gynecol 188(4):916–926 [PMID: 12712086]
  130. Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P et al (2006) Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117(1):78–88 [PMID: 16423043]
  131. Shi G-N, Zhang C-N, Xu R, Niu J-F, Song H-J, Zhang X-Y et al (2017) Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials 113:191–202 [PMID: 27816821]
  132. Shim B-S, Park S-M, Quan J-S, Jere D, Chu H, Song MK et al (2010) Intranasal immunization with plasmid DNA encoding spike protein of SARS-coronavirus/polyethylenimine nanoparticles elicits antigen-specific humoral and cellular immune responses. BMC Immunol 11:1–9 [DOI: 10.1186/1471-2172-11-65]
  133. Sivalingam G, Madras G (2003) Thermal degradation of poly (ε-caprolactone). Polym Degrad Stab 80(1):11–16 [DOI: 10.1016/S0141-3910(02)00376-2]
  134. Smith DM, Simon JK, Baker JR Jr (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13(8):592–605 [PMID: 23883969]
  135. Smith JD, Morton LD, Ulery BD (2015) Nanoparticles as synthetic vaccines. Curr Opin Biotechnol 34:217–224 [PMID: 25863196]
  136. Son S, Kim WJ (2010) Biodegradable nanoparticles modified by branched polyethylenimine for plasmid DNA delivery. Biomaterials 31(1):133–143 [PMID: 19783041]
  137. Soofiyani SR, Hallaj-Nezhadi S, Lotfipour F, Hosseini AM, Baradaran B (2016) Gene therapy based on interleukin-12 loaded chitosan nanoparticles in a mouse model of fibrosarcoma. Iran J Basic Med Sci 19(11):1238 [PMID: 27917281]
  138. Stephens AJ, Burgess-Brown NA, Jiang S (2021) Beyond just peptide antigens: the complex world of peptide-based cancer vaccines. Front Immunol 12:696791 [PMID: 34276688]
  139. Sun X, Zhang N (2010) Cationic polymer optimization for efficient gene delivery. Mini Rev Med Chem 10(2):108–125 [PMID: 20408796]
  140. Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V (2019) Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Objects 20:100397 [DOI: 10.1016/j.nanoso.2019.100397]
  141. Suschak JJ, Williams JA, Schmaljohn CS (2017) Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccines Immunother 13(12):2837–2848 [DOI: 10.1080/21645515.2017.1330236]
  142. Tahamtan A, Ghaemi A, Gorji A, Kalhor HR, Sajadian A, Tabarraei A et al (2014) Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. J Biomed Sci 21(1):69 [PMID: 25077570]
  143. Tahamtan A, Tabarraei A, Moradi A, Dinarvand M, Kelishadi M, Ghaemi A et al (2015) Chitosan nanoparticles as a potential nonviral gene delivery for HPV-16 E7 into mammalian cells. Artif cells Nanomed Biotechnol 43(6):366–372 [PMID: 24641772]
  144. Tahamtan A, Barati M, Tabarraei A, Mohebbi SR, Shirian S, Gorji A et al (2018) Antitumor Immunity Induced by genetic immunization with Chitosan Nanoparticle formulated adjuvanted for HPV-16 E7 DNA vaccine. Iran J Immunol 15(4):269–280 [PMID: 30593741]
  145. Talsma SS, Babensee JE, Murthy N, Williams IR (2006) Development and in vitro validation of a targeted delivery vehicle for DNA vaccines. J Controll Release 112(2):271–279 [DOI: 10.1016/j.jconrel.2006.02.008]
  146. Tan L, Han S, Ding S, Xiao W, Ding Y, Qian L et al (2017) Chitosan nanoparticle-based delivery of fused NKg2D–Il-21 gene suppresses colon cancer growth in mice. Int J Nanomed 12:3095 [DOI: 10.2147/IJN.S128032]
  147. Tepper M, Shoval A, Hoffer O, Confino H, Schmidt M, Kelson I et al (2013) Thermographic investigation of tumor size, and its correlation to tumor relative temperature, in mice with transplantable solid breast carcinoma. J Biomed Opt 18(11):111410 [PMID: 23934014]
  148. Thomann J-S, Heurtault B, Weidner S, Brayé M, Beyrath J, Fournel S et al (2011) Antitumor activity of liposomal ErbB2/HER2 epitope peptide-based vaccine constructs incorporating TLR agonists and mannose receptor targeting. Biomaterials 32(20):4574–4583 [PMID: 21474175]
  149. Ullas PT, Madhusudana SN, Desai A, Sagar BKC, Jayamurugan G, Rajesh YBRD et al (2014) Enhancement of immunogenicity and efficacy of a plasmid DNA rabies vaccine by nanoformulation with a fourth-generation amine-terminated poly (ether imine) dendrimer. Int J Nanomed 9:627
  150. Un K, Kawakami S, Suzuki R, Maruyama K, Yamashita F, Hashida M (2010) Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy. Biomaterials 31(30):7813–7826 [PMID: 20656348]
  151. van Riet E, Ainai A, Suzuki T, Kersten G, Hasegawa H (2014) Combatting infectious diseases; nanotechnology as a platform for rational vaccine design. Adv Drug Deliv Rev 74:28–34 [PMID: 24862579]
  152. Vanparijs N, Nuhn L, De Geest BG (2017) Transiently thermoresponsive polymers and their applications in biomedicine. Chem Soc Rev 46(4):1193–1239 [PMID: 28165097]
  153. Walter E, Moelling K, Pavlovic J, Merkle HP (1999) Microencapsulation of DNA using poly (DL-lactide-co-glycolide): stability issues and release characteristics. J Controll Release 61(3):361–374 [DOI: 10.1016/S0168-3659(99)00151-0]
  154. Wang C, Ge Q, Ting D, Nguyen D, Shen H-R, Chen J et al (2004) Molecularly engineered poly (ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat Mater 3(3):190–196 [PMID: 14991022]
  155. Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR et al (2011) Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomed 6:765
  156. Wen R, Banik B, Pathak RK, Kumar A, Kolishetti N, Dhar S (2016) Nanotechnology inspired tools for mitochondrial dysfunction related diseases. Adv Drug Deliv Rev 99:52–69 [PMID: 26776231]
  157. Wen R, Umeano AC, Chen P, Farooqi AA (2018) Polymer-based drug delivery systems for cancer. Crit Rev Ther Drug Carr Syst 35(6)
  158. Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA (2019) Nanoparticle systems for cancer vaccine. Nanomedicine 14(5):627–648 [PMID: 30806568]
  159. Whang CH, Lee HK, Kundu S, Murthy SN, Jo S (2018) Pluronic-based dual‐stimuli sensitive polymers capable of thermal gelation and p H‐dependent degradation for in situ biomedical application. J Appl Polym Sci 135(31):46552 [PMID: 30319143]
  160. Wood KC, Little SR, Langer R, Hammond PT (2005) A family of hierarchically self-assembling linear‐dendritic hybrid polymers for highly efficient targeted gene delivery. Angew Chem Int Ed 44(41):6704–6708 [DOI: 10.1002/anie.200502152]
  161. Xiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL et al (2006) Pathogen recognition and development of particulate vaccines: does size matter? Methods 40(1):1–9 [PMID: 16997708]
  162. Xiao Y, Shi K, Qu Y, Chu B, Qian Z (2019) Engineering nanoparticles for targeted delivery of nucleic acid therapeutics in tumor. Mol Ther-Methods Clin Dev 12:1–18 [PMID: 30364598]
  163. Xing Y, Cheng E, Yang Y, Chen P, Zhang T, Sun Y et al (2011) Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv Mater 23(9):1117–1121 [PMID: 21181766]
  164. Xing L, Fan Y-T, Zhou T-J, Gong J-H, Cui L-H, Cho K-H et al (2018) Chemical modification of chitosan for efficient vaccine delivery. Molecules 23(2):229 [PMID: 29370100]
  165. Xu J, Ye J, Liu S (2007) Synthesis of well-defined cyclic poly (N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior. Macromolecules 40(25):9103–9110 [DOI: 10.1021/ma0717183]
  166. Xu S, Zhang R, Zhao W, Zhu Y, Wei W, Liu X et al (2017) Self-assembled polymeric nanoparticles film stabilizing gold nanoparticles as a versatile platform for ultrasensitive detection of carcino-embryonic antigen. Biosens Bioelectron 92:570–576 [PMID: 27829564]
  167. Yan C, Jie L, Yongqi W, Weiming X, Juqun X, Yanbing D et al (2015) Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity. Biochem Biophys Res Commun 463(3):336–343 [PMID: 26022121]
  168. Yang J, Li Y, Jin S, Xu J, Wang PC, Liang X-J et al (2015) Engineered biomaterials for development of nucleic acid vaccines. Biomater Res 19(1):1–9 [DOI: 10.1186/s40824-014-0025-8]
  169. Yao W, Peng Y, Du M, Luo J, Zong L (2013) Preventative vaccine-loaded mannosylated chitosan nanoparticles intended for nasal mucosal delivery enhance immune responses and potent tumor immunity. Mol Pharm 10(8):2904–2914 [PMID: 23768205]
  170. Yu M, Finn OJ (2006) DNA vaccines for cancer too. Cancer Immunol Immunother 55(2):119–130 [PMID: 16032397]
  171. Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2(1):3 [PMID: 22272217]
  172. Yu F, Zhao F, Cai K, Zhang H, Gu N, Dou J (2017) Polyethylenimine modified nanoparticle adjuvant increases therapeutic efficacy of DNA vaccine Ag85A-ESAT-6-IL-21 in mice infected with Mycobacterium tuberculosis. Int J Clin Exp Med 10(8):12123–12131
  173. Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M et al (2011) Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32(14):3666–3678 [PMID: 21345488]
  174. Zhao L, Seth A, Wibowo N, Zhao C-X, Mitter N, Yu C et al (2014) Nanoparticle vaccines. Vaccine 32(3):327–337 [PMID: 24295808]
  175. Zhou X, Liu B, Yu X, Zha X, Zhang X, Chen Y et al (2007) Controlled release of PEI/DNA complexes from mannose-bearing chitosan microspheres as a potent delivery system to enhance immune response to HBV DNA vaccine. J Controll Release 121(3):200–207 [DOI: 10.1016/j.jconrel.2007.05.018]
  176. Zou W, Liu C, Chen Z, Zhang N (2009) Studies on bioadhesive PLGA nanoparticles: a promising gene delivery system for efficient gene therapy to lung cancer. Int J Pharm 370(1–2):187–195 [PMID: 19073241]
  177. Zuppardi F, Malinconico M, d’Agosto F, D’ayala GG, Cerruti P (2020) Well-defined thermo-responsive copolymers based on oligo (ethylene glycol) methacrylate and pentafluorostyrene for the removal of organic dyes from water. Nanomaterials 10(9):1779 [PMID: 32911815]

MeSH Term

Humans
Vaccines, DNA
Adjuvants, Immunologic
Polymers
Neoplasms
Immunotherapy
Nanoparticles
Cancer Vaccines

Chemicals

Vaccines, DNA
Adjuvants, Immunologic
Polymers
Cancer Vaccines

Word Cloud

Created with Highcharts 10.0.0nanoparticlesDNAcancervaccineCancerimmunotherapyimmuneneedtherapeutictypesystemmaterialsusedpolymericincreaseantigenpresentationefficiencypolymerPolymericoneleadingcausesdeathmortalityworldessentialdevelopnewdrugsapproachesmanagetreatment-resistantcancerstreatmentusespowerbody'spreventcontroleliminateOneapplicationcarriersvaccineseffectiveapproachactivateresponsesVariousincluding:chitosanpolylactic-co-glycolicacidPolyethyleniminedendrimerspolypeptidespolyestersApplicationseveraladvantagesincludingincreaseddeliveryenhancedadjuvanteffectssustainableinductionBesidesmanyclinicaltrialscommercialproductsdevelopedbasedstillcomprehensivestudiesusingcarriervaccine-basedimmunotherapy:reviewImmunotherapy

Similar Articles

Cited By