Global patterns of genomic and phenotypic variation in the invasive harlequin ladybird.

Hongran Li, Yan Peng, Yansong Wang, Bryce Summerhays, Xiaohan Shu, Yumary Vasquez, Hannah Vansant, Christy Grenier, Nicolette Gonzalez, Khyati Kansagra, Ryan Cartmill, Edison Ryoiti Sujii, Ling Meng, Xuguo Zhou, Gábor L Lövei, John J Obrycki, Arun Sethuraman, Baoping Li
Author Information
  1. Hongran Li: Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China.
  2. Yan Peng: Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China.
  3. Yansong Wang: Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China.
  4. Bryce Summerhays: Department of Biological Sciences, California State University, San Marcos, CA, USA.
  5. Xiaohan Shu: Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China.
  6. Yumary Vasquez: Department of Biological Sciences, California State University, San Marcos, CA, USA.
  7. Hannah Vansant: Department of Biological Sciences, California State University, San Marcos, CA, USA.
  8. Christy Grenier: Department of Biological Sciences, California State University, San Marcos, CA, USA.
  9. Nicolette Gonzalez: Department of Biological Sciences, California State University, San Marcos, CA, USA.
  10. Khyati Kansagra: Department of Biological Sciences, California State University, San Marcos, CA, USA.
  11. Ryan Cartmill: Department of Biological Sciences, California State University, San Marcos, CA, USA.
  12. Edison Ryoiti Sujii: Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Brasilia, DF, Brazil.
  13. Ling Meng: Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China.
  14. Xuguo Zhou: Department of Entomology, University of Kentucky, Lexington, KY, USA.
  15. Gábor L Lövei: Department of Agroecology, Flakkebjerg Research Centre, Aarhus University, Aarhus, Denmark.
  16. John J Obrycki: Department of Entomology, University of Kentucky, Lexington, KY, USA.
  17. Arun Sethuraman: Department of Biological Sciences, California State University, San Marcos, CA, USA. asethuraman@sdsu.edu.
  18. Baoping Li: Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China. lbp@njau.edu.cn. ORCID

Abstract

BACKGROUND: The harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae), native to Asia, has been introduced to other major continents where it has caused serious negative impacts on local biodiversity. Though notable advances to understand its invasion success have been made during the past decade, especially with then newer molecular tools, the conclusions reached remain to be confirmed with more advanced genomic analyses and especially using more samples from larger geographical regions across the native range. Furthermore, although H. axyridis is one of the best studied invasive insect species with respect to life history traits (often comparing invasive and native populations), the traits responsible for its colonization success in non-native areas warrant more research.
RESULTS: Our analyses of genome-wide nuclear population structure indicated that an eastern Chinese population could be the source of all non-native populations and revealed several putatively adaptive candidate genomic loci involved in body color variation, visual perception, and hemolymph synthesis. Our estimates of evolutionary history indicate (1) asymmetric migration with varying population sizes across its native and non-native range, (2) a recent admixture between eastern Chinese and American populations in Europe, (3) signatures of a large progressive, historical bottleneck in the common ancestors of both populations and smaller effective sizes of the non-native population, and (4) the southwest origin and subsequent dispersal routes within its native range in China. In addition, we found that while two mitochondrial haplotypes-Hap1 and Hap2 were dominant in the native range, Hap1 was the only dominant haplotype in the non-native range. Our laboratory observations in both China and USA found statistical yet slight differences between Hap1 and Hap2 in some of life history traits.
CONCLUSIONS: Our study on H. axyridis provides new insights into its invasion processes into other major continents from its native Asian range, reconstructs a geographic range evolution across its native region China, and tentatively suggests that its invasiveness may differ between mitochondrial haplotypes.

Keywords

References

  1. Biol Lett. 2016 Feb;12(2):20150623 [PMID: 26888913]
  2. Ecol Evol. 2019 Jun 28;9(14):7928-7941 [PMID: 31380061]
  3. G3 (Bethesda). 2022 Mar 4;12(3): [PMID: 35100359]
  4. Nat Commun. 2015 Jun 02;6:7268 [PMID: 26035519]
  5. Nature. 2011 Jul 13;475(7357):493-6 [PMID: 21753753]
  6. Nature. 2021 Apr;592(7855):571-576 [PMID: 33790468]
  7. Am Nat. 2015 Oct;186 Suppl 1:S24-36 [PMID: 26656214]
  8. Mol Biol Evol. 1999 Jan;16(1):37-48 [PMID: 10331250]
  9. Nat Commun. 2014 Dec 16;5:5495 [PMID: 25510865]
  10. Genome Biol. 2016 Nov 11;17(1):227 [PMID: 27832824]
  11. Mol Ecol. 2019 Jul;28(14):3306-3323 [PMID: 31183910]
  12. Bioinformatics. 2009 Jun 1;25(11):1451-2 [PMID: 19346325]
  13. Syst Biol. 2018 Sep 1;67(5):901-904 [PMID: 29718447]
  14. Nat Ecol Evol. 2019 Jan;3(1):105-115 [PMID: 30532047]
  15. Mol Ecol. 2014 Jul;23(13):3133-57 [PMID: 24845075]
  16. Science. 2012 Aug 3;337(6094):580-3 [PMID: 22859488]
  17. Nat Commun. 2019 Sep 17;10(1):4237 [PMID: 31530873]
  18. Curr Biol. 2011 Mar 8;21(5):424-7 [PMID: 21333536]
  19. Genome Res. 2009 Jul;19(7):1195-201 [PMID: 19439516]
  20. Evolution. 2007 Jul;61(7):1735-47 [PMID: 17598752]
  21. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  22. Mol Ecol. 2015 May;24(9):1999-2017 [PMID: 25891044]
  23. Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7905-7910 [PMID: 30926662]
  24. Nat Commun. 2017 Feb 15;8:14435 [PMID: 28198420]
  25. Dev Growth Differ. 2019 Jan;61(1):73-84 [PMID: 30644547]
  26. PLoS One. 2020 Apr 2;15(4):e0231009 [PMID: 32240264]
  27. Insect Biochem Mol Biol. 2008 Apr;38(4):490-8 [PMID: 18342253]
  28. Mol Biol Evol. 2017 Apr 1;34(4):980-996 [PMID: 28122970]
  29. Mol Ecol. 2014 Dec;23(24):5979-97 [PMID: 25369988]
  30. Mol Ecol Resour. 2021 May;21(4):1318-1332 [PMID: 33529495]
  31. Mol Ecol. 2013 Jun;22(11):3124-40 [PMID: 23701397]
  32. BMC Biol. 2017 Jul 31;15(1):63 [PMID: 28756777]
  33. Nat Methods. 2012 May 20;9(8):808-10 [PMID: 22609625]
  34. Evol Appl. 2021 Mar 30;14(6):1463-1484 [PMID: 34178098]
  35. Heredity (Edinb). 2007 Apr;98(4):189-97 [PMID: 17389895]
  36. Curr Biol. 2018 Oct 22;28(20):3296-3302.e7 [PMID: 30146156]
  37. Plant Divers. 2017 Sep 18;39(4):161-166 [PMID: 30159507]
  38. Ann Entomol Soc Am. 2021 Jan 22;114(2):119-136 [PMID: 33732410]
  39. Sci Rep. 2018 Jan 31;8(1):1931 [PMID: 29386578]
  40. Bioinformatics. 2008 Mar 1;24(5):713-4 [PMID: 18227114]
  41. Biol Rev Camb Philos Soc. 2015 Feb;90(1):236-53 [PMID: 24784793]
  42. Insect Sci. 2021 Jun;28(3):627-638 [PMID: 32558234]
  43. Mol Ecol Resour. 2010 May;10(3):564-7 [PMID: 21565059]
  44. Mol Ecol. 2008 Jan;17(1):431-49 [PMID: 17908213]
  45. Mol Biol Evol. 2006 Mar;23(3):691-700 [PMID: 16364968]
  46. Mol Ecol. 2011 Nov;20(22):4654-70 [PMID: 22004292]
  47. Insect Mol Biol. 2021 Jun;30(3):253-263 [PMID: 33410574]
  48. PLoS Genet. 2012;8(11):e1002967 [PMID: 23166502]
  49. Mol Biol Evol. 2013 Dec;30(12):2725-9 [PMID: 24132122]
  50. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  51. PLoS One. 2010 Mar 17;5(3):e9743 [PMID: 20305822]
  52. Fly (Austin). 2012 Apr-Jun;6(2):80-92 [PMID: 22728672]
  53. Nucleic Acids Res. 2008 Jan;36(Database issue):D735-40 [PMID: 18056084]
  54. Genetics. 2003 Mar;163(3):1177-91 [PMID: 12663554]
  55. Mol Ecol. 2015 Oct;24(20):5078-83 [PMID: 26456794]
  56. Mol Ecol. 2020 Nov;29(21):4102-4117 [PMID: 32246535]
  57. J Evol Biol. 2020 Dec;33(12):1770-1782 [PMID: 33030255]
  58. Am J Hum Genet. 2007 Sep;81(3):559-75 [PMID: 17701901]
  59. Mol Ecol. 2015 May;24(9):2277-97 [PMID: 25474505]
  60. J Insect Sci. 2003;3:32 [PMID: 15841248]
  61. Mol Ecol. 2016 Mar;25(5):1058-72 [PMID: 26797914]
  62. Insect Biochem Mol Biol. 2012 Sep;42(9):655-64 [PMID: 22659439]
  63. Mol Biol Evol. 2020 Aug 1;37(8):2369-2385 [PMID: 32302396]
  64. Mol Biol Evol. 1993 May;10(3):512-26 [PMID: 8336541]
  65. Genome Res. 2009 Sep;19(9):1655-64 [PMID: 19648217]
  66. PLoS Genet. 2013 Oct;9(10):e1003905 [PMID: 24204310]
  67. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  68. PLoS One. 2011;6(10):e25579 [PMID: 21998669]
  69. Mol Biol Evol. 2021 Jul 29;38(8):3478-3485 [PMID: 33950197]
  70. Insect Mol Biol. 2020 Apr;29(2):148-159 [PMID: 31531894]
  71. Mol Ecol. 2021 Jan;30(1):83-99 [PMID: 33089581]
  72. Evol Appl. 2019 Sep 10;13(1):95-115 [PMID: 31892946]
  73. Insects. 2020 May 09;11(5): [PMID: 32397374]
  74. Mol Ecol. 2018 Mar;27(6):1342-1356 [PMID: 29524276]
  75. Mol Ecol. 2021 Dec;30(23):6289-6308 [PMID: 34041794]
  76. Trends Ecol Evol. 2013 Jan;28(1):58-66 [PMID: 22889499]
  77. Mol Ecol. 2018 Jun;27(11):2576-2593 [PMID: 29707847]

MeSH Term

Animals
Coleoptera
Haplotypes
Phenotype
Genomics
Biological Variation, Population

Word Cloud

Created with Highcharts 10.0.0nativerangehistorynon-nativepopulationspopulationaxyridisgenomicacrossinvasivetraitsChinaharlequinladybirdmajorcontinentsinvasionsuccessespeciallyanalysesHlifeeasternChinesevariationsizesfoundmitochondrialHap2dominantHap1BACKGROUND:HarmoniaColeoptera:CoccinellidaeAsiaintroducedcausedseriousnegativeimpactslocalbiodiversityThoughnotableadvancesunderstandmadepastdecadenewermoleculartoolsconclusionsreachedremainconfirmedadvancedusingsampleslargergeographicalregionsFurthermorealthoughonebeststudiedinsectspeciesrespectoftencomparingresponsiblecolonizationareaswarrantresearchRESULTS:genome-widenuclearstructureindicatedsourcerevealedseveralputativelyadaptivecandidatelociinvolvedbodycolorvisualperceptionhemolymphsynthesisestimatesevolutionaryindicate1asymmetricmigrationvarying2recentadmixtureAmericanEurope3signatureslargeprogressivehistoricalbottleneckcommonancestorssmallereffective4southwestoriginsubsequentdispersalrouteswithinadditiontwohaplotypes-Hap1haplotypelaboratoryobservationsUSAstatisticalyetslightdifferencesCONCLUSIONS:studyprovidesnewinsightsprocessesAsianreconstructsgeographicevolutionregiontentativelysuggestsinvasivenessmaydifferhaplotypesGlobalpatternsphenotypicAdaptationEvolutionaryInvasionbiologyLifePopulationgenomicsmtCOI

Similar Articles

Cited By