Cancer cell plasticity and MHC-II-mediated immune tolerance promote breast cancer metastasis to lymph nodes.

Pin-Ji Lei, Ethel R Pereira, Patrik Andersson, Zohreh Amoozgar, Jan Willem Van Wijnbergen, Meghan J O'Melia, Hengbo Zhou, Sampurna Chatterjee, William W Ho, Jessica M Posada, Ashwin S Kumar, Satoru Morita, Lutz Menzel, Charlie Chung, Ilgin Ergin, Dennis Jones, Peigen Huang, Semir Beyaz, Timothy P Padera
Author Information
  1. Pin-Ji Lei: Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID
  2. Ethel R Pereira: Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID
  3. Patrik Andersson: Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID
  4. Zohreh Amoozgar: Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID
  5. Jan Willem Van Wijnbergen: Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID
  6. Meghan J O'Melia: Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID
  7. Hengbo Zhou: Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID
  8. Sampurna Chatterjee: Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID
  9. William W Ho: Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID
  10. Jessica M Posada: Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID
  11. Ashwin S Kumar: Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID
  12. Satoru Morita: Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID
  13. Lutz Menzel: Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID
  14. Charlie Chung: Cold Spring Harbor Laboratory , Cold Spring Harbor, NY, USA. ORCID
  15. Ilgin Ergin: Cold Spring Harbor Laboratory , Cold Spring Harbor, NY, USA. ORCID
  16. Dennis Jones: Department of Pathology and Laboratory Medicine, School of Medicine, Boston University, Boston, MA, USA. ORCID
  17. Peigen Huang: Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID
  18. Semir Beyaz: Cold Spring Harbor Laboratory , Cold Spring Harbor, NY, USA. ORCID
  19. Timothy P Padera: Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. ORCID

Abstract

Tumor-draining lymph nodes (TDLNs) are important for tumor antigen-specific T cell generation and effective anticancer immune responses. However, TDLNs are often the primary site of metastasis, causing immune suppression and worse outcomes. Through cross-species single-cell RNA-Seq analysis, we identified features defining cancer cell heterogeneity, plasticity, and immune evasion during breast cancer progression and lymph node metastasis (LNM). A subset of cancer cells in the lymph nodes exhibited elevated MHC class II (MHC-II) gene expression in both mice and humans. MHC-II+ cancer cells lacked costimulatory molecule expression, leading to regulatory T cell (Treg) expansion and fewer CD4+ effector T cells in TDLNs. Genetic knockout of MHC-II reduced LNM and Treg expansion, while overexpression of the MHC-II transactivator, Ciita, worsened LNM and caused excessive Treg expansion. These findings demonstrate that cancer cell MHC-II expression promotes metastasis and immune evasion in TDLNs.

References

  1. Sci Immunol. 2021 Sep 10;6(63):eabg3551 [PMID: 34516744]
  2. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  3. Lancet Oncol. 2014 Nov;15(12):1303-10 [PMID: 25439688]
  4. Nat Protoc. 2013 Nov;8(11):2281-2308 [PMID: 24157548]
  5. Ann Surg Oncol. 2020 Nov;27(12):4810-4818 [PMID: 32720039]
  6. Mucosal Immunol. 2021 Mar;14(2):443-454 [PMID: 33139845]
  7. Cell Rep. 2020 Mar 24;30(12):4110-4123.e4 [PMID: 32209472]
  8. Cell. 2008 May 16;133(4):704-15 [PMID: 18485877]
  9. BMC Bioinformatics. 2018 Nov 6;19(1):404 [PMID: 30400809]
  10. Nat Commun. 2021 May 11;12(1):2582 [PMID: 33976133]
  11. Cell Rep. 2021 Feb 9;34(6):108748 [PMID: 33567282]
  12. Curr Opin Immunol. 2008 Dec;20(6):669-75 [PMID: 18852045]
  13. JAMA Otolaryngol Head Neck Surg. 2019 Apr 01;145(4):352-360 [PMID: 30844021]
  14. Sci Immunol. 2021 Oct;6(64):eabg7836 [PMID: 34597124]
  15. Cell. 2014 Aug 28;158(5):1094-1109 [PMID: 25171410]
  16. JAMA. 2011 Feb 9;305(6):569-75 [PMID: 21304082]
  17. Nat Rev Immunol. 2022 Mar;22(3):158-172 [PMID: 34155388]
  18. Nature. 2020 Sep;585(7823):113-118 [PMID: 32814895]
  19. Trends Cell Biol. 2019 Mar;29(3):212-226 [PMID: 30594349]
  20. Cell Stem Cell. 2021 Nov 4;28(11):1922-1935.e5 [PMID: 34529935]
  21. Nat Commun. 2018 May 29;9(1):2113 [PMID: 29844317]
  22. Nature. 2022 May;605(7911):728-735 [PMID: 35545675]
  23. Cell. 2018 Nov 15;175(5):1307-1320.e22 [PMID: 30392957]
  24. Curr Protoc Immunol. 2001 May;Chapter 20:Unit 20.2 [PMID: 18432775]
  25. Vaccine. 2008 Dec 30;26 Suppl 8:I86-93 [PMID: 19388171]
  26. Nat Cell Biol. 2019 Jan;21(1):44-53 [PMID: 30602762]
  27. Comput Struct Biotechnol J. 2021 Jun 30;19:3796-3798 [PMID: 34285779]
  28. Am J Transplant. 2004 Oct;4(10):1614-27 [PMID: 15367216]
  29. Nat Methods. 2017 Mar;14(3):309-315 [PMID: 28114287]
  30. Cancer Discov. 2019 Aug;9(8):1102-1123 [PMID: 31197017]
  31. PLoS One. 2011;6(8):e24226 [PMID: 21918685]
  32. Immunity. 2021 Sep 14;54(9):2117-2132.e7 [PMID: 34525340]
  33. Nat Biomed Eng. 2021 Dec;5(12):1426-1436 [PMID: 34282290]
  34. Cancer Res. 2017 Aug 1;77(15):3982-3989 [PMID: 28428275]
  35. Nat Commun. 2021 Feb 17;12(1):1088 [PMID: 33597522]
  36. Curr Opin Immunol. 2018 Aug;53:64-73 [PMID: 29698919]
  37. Sci Rep. 2017 Dec 4;7(1):16878 [PMID: 29203879]
  38. Science. 2022 Sep 9;377(6611):1180-1191 [PMID: 35981096]
  39. Mol Oncol. 2017 Jul;11(7):781-791 [PMID: 28590032]
  40. J Natl Cancer Inst. 2015 Jun 10;107(9): [PMID: 26063793]
  41. Nat Med. 2018 May;24(5):541-550 [PMID: 29686425]
  42. Front Immunol. 2018 Sep 25;9:2144 [PMID: 30319613]
  43. Cancer Discov. 2020 Feb;10(2):232-253 [PMID: 31699795]
  44. Nat Med. 2020 Aug;26(8):1271-1279 [PMID: 32572264]
  45. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  46. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  47. Oncogenesis. 2021 Oct 5;10(10):66 [PMID: 34611125]
  48. Mol Microbiol. 2010 Jun;76(6):1358-75 [PMID: 20398214]
  49. Cancer Res. 2015 Jul 1;75(13):2749-59 [PMID: 25948589]
  50. Bioinformatics. 2020 Apr 15;36(8):2628-2629 [PMID: 31882993]
  51. Cell. 2016 Dec 1;167(6):1540-1554.e12 [PMID: 27912061]
  52. Science. 2018 Mar 23;359(6382):1403-1407 [PMID: 29567713]
  53. Science. 2019 Feb 8;363(6427):644-649 [PMID: 30733421]
  54. Front Oncol. 2018 Feb 21;8:36 [PMID: 29527513]
  55. Nature. 2018 Apr;556(7702):463-468 [PMID: 29670281]
  56. J Virol. 2007 Apr;81(7):3487-94 [PMID: 17202212]
  57. JCI Insight. 2018 Dec 20;3(24): [PMID: 30568030]
  58. Sci Transl Med. 2018 Jul 18;10(450): [PMID: 30021886]
  59. Cells. 2021 Mar 12;10(3): [PMID: 33808959]
  60. Cancers (Basel). 2019 Jun 17;11(6): [PMID: 31213009]
  61. BMC Bioinformatics. 2013 Jan 16;14:7 [PMID: 23323831]
  62. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  63. Nature. 2017 Jan 5;541(7635):41-45 [PMID: 27974793]
  64. Nucleic Acids Res. 2016 May 5;44(8):e71 [PMID: 26704973]
  65. Nat Commun. 2018 Sep 4;9(1):3588 [PMID: 30181541]
  66. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  67. Cell. 2004 Jun 25;117(7):927-39 [PMID: 15210113]
  68. Cell. 2017 Dec 14;171(7):1611-1624.e24 [PMID: 29198524]
  69. Nature. 2022 Jun;606(7915):797-803 [PMID: 35705814]
  70. Front Immunol. 2011 Oct 04;2:48 [PMID: 22566838]
  71. Cell Rep. 2017 May 9;19(6):1189-1201 [PMID: 28494868]
  72. J Exp Med. 2005 Apr 4;201(7):1061-7 [PMID: 15809351]
  73. Nucleic Acids Res. 2020 Nov 4;48(19):e113 [PMID: 32997146]
  74. Science. 2018 Mar 23;359(6382):1408-1411 [PMID: 29567714]
  75. Cell. 2022 May 26;185(11):1924-1942.e23 [PMID: 35525247]
  76. Clin Cancer Res. 2019 Apr 15;25(8):2392-2402 [PMID: 30463850]
  77. Front Immunol. 2019 May 07;10:1033 [PMID: 31134089]
  78. Nature. 2022 Jun;606(7915):791-796 [PMID: 35322234]
  79. J Exp Med. 2013 Jul 29;210(8):1509-28 [PMID: 23878309]
  80. Blood. 2016 Aug 25;128(8):e20-31 [PMID: 27365425]
  81. J Clin Oncol. 2011 Jul 1;29(19):2628-34 [PMID: 21606433]
  82. Cancer Cell. 2020 Nov 9;38(5):685-700.e8 [PMID: 33007259]
  83. JCI Insight. 2018 Dec 6;3(23): [PMID: 30518694]
  84. Anticancer Res. 2017 Apr;37(4):1773-1778 [PMID: 28373440]
  85. Nat Immunol. 2019 Apr;20(4):471-481 [PMID: 30778241]
  86. Cancer Cell. 2020 Sep 14;38(3):412-423.e9 [PMID: 32679107]

Grants

  1. T32 HL007627/NHLBI NIH HHS
  2. T32 CA251062/NCI NIH HHS
  3. K22 CA230315/NCI NIH HHS
  4. R21 AI097745/NIAID NIH HHS
  5. P30 CA045508/NCI NIH HHS
  6. R01 HL128168/NHLBI NIH HHS
  7. F32 CA275298/NCI NIH HHS
  8. R01 CA284372/NCI NIH HHS
  9. R01 CA284603/NCI NIH HHS
  10. R01 CA214913/NCI NIH HHS
  11. K00 CA234940/NCI NIH HHS

MeSH Term

Humans
Animals
Mice
Female
Breast Neoplasms
Cell Plasticity
Lymph Nodes
T-Lymphocytes, Regulatory
Lymphatic Metastasis
Immune Tolerance
Melanoma, Cutaneous Malignant

Word Cloud

Created with Highcharts 10.0.0cancercellimmunelymphTDLNsmetastasisMHC-IInodesTLNMcellsexpressionTregexpansionplasticityevasionbreastTumor-drainingimportanttumorantigen-specificgenerationeffectiveanticancerresponsesHoweveroftenprimarysitecausingsuppressionworseoutcomescross-speciessingle-cellRNA-SeqanalysisidentifiedfeaturesdefiningheterogeneityprogressionnodesubsetexhibitedelevatedMHCclassIIgenemicehumansMHC-II+lackedcostimulatorymoleculeleadingregulatoryfewerCD4+effectorGeneticknockoutreducedoverexpressiontransactivatorCiitaworsenedcausedexcessivefindingsdemonstratepromotesCancerMHC-II-mediatedtolerancepromote

Similar Articles

Cited By