Antimicrobial peptides as drugs with double response against coinfections in lung cancer.

Giulia Polinário, Laura Maria Duran Gleriani Primo, Maiara Alane Baraldi Cerquetani Rosa, Freddy Humberto Marin Dett, Paula Aboud Barbugli, Cesar Augusto Roque-Borda, Fernando Rogério Pavan
Author Information
  1. Giulia Polinário: School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
  2. Laura Maria Duran Gleriani Primo: School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
  3. Maiara Alane Baraldi Cerquetani Rosa: School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
  4. Freddy Humberto Marin Dett: School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
  5. Paula Aboud Barbugli: School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
  6. Cesar Augusto Roque-Borda: Vicerrectorado de Investigación, Universidad Católica de Santa María (UCSM), Arequipa, Peru.
  7. Fernando Rogério Pavan: School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.

Abstract

tuberculosis and lung cancer are, in many cases, correlated diseases that can be confused because they have similar symptoms. Many meta-analyses have proven that there is a greater chance of developing lung cancer in patients who have active pulmonary tuberculosis. It is, therefore, important to monitor the patient for a long time after recovery and search for combined therapies that can treat both diseases, as well as face the great problem of drug resistance. Peptides are molecules derived from the breakdown of proteins, and the membranolytic class is already being studied. It has been proposed that these molecules destabilize cellular homeostasis, performing a dual antimicrobial and anticancer function and offering several possibilities of adaptation for adequate delivery and action. In this review, we focus on two important reason for the use of multifunctional Peptides or Peptides, namely the double activity and no harmful effects on humans. We review some of the main antimicrobial and anti-inflammatory bioactive Peptides and highlight four that have anti-tuberculosis and anti-cancer activity, which may contribute to obtaining drugs with this dual functionality.

Keywords

References

  1. Int J Mol Sci. 2021 Jun 30;22(13): [PMID: 34208826]
  2. Int J Pharm. 2022 Jun 25;622:121894 [PMID: 35680109]
  3. Nat Commun. 2017 Aug 15;8(1):244 [PMID: 28811474]
  4. BMC Pharmacol Toxicol. 2019 May 28;20(1):33 [PMID: 31138331]
  5. Int J Pharm. 2022 May 10;619:121651 [PMID: 35288222]
  6. Sci Rep. 2015 Dec 10;5:18176 [PMID: 26658723]
  7. Front Immunol. 2018 Dec 06;9:2873 [PMID: 30574146]
  8. Peptides. 2015 Nov;73:51-9 [PMID: 26352292]
  9. Biomaterials. 2023 Feb;293:121978 [PMID: 36580719]
  10. Molecules. 2022 Jan 16;27(2): [PMID: 35056876]
  11. Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):6031-6 [PMID: 17389386]
  12. NPJ Precis Oncol. 2020 Dec 10;4(1):33 [PMID: 33303906]
  13. Int J Mol Sci. 2022 Aug 01;23(15): [PMID: 35955665]
  14. BMC Vet Res. 2023 Feb 11;19(1):47 [PMID: 36765333]
  15. J Clin Lab Anal. 2022 Oct;36(10):e24644 [PMID: 36053953]
  16. Peptides. 2021 Jun;140:170527 [PMID: 33744370]
  17. Front Immunol. 2020 Dec 23;11:615536 [PMID: 33424870]
  18. Nat Commun. 2023 Mar 16;14(1):1464 [PMID: 36928189]
  19. Pharm Res. 2022 Nov;39(11):2859-2870 [PMID: 35246758]
  20. Protein Sci. 2020 Feb;29(2):480-493 [PMID: 31675138]
  21. J Nat Prod. 2015 Aug 28;78(8):1910-25 [PMID: 26213786]
  22. Front Immunol. 2016 Apr 21;7:150 [PMID: 27148269]
  23. Tuberculosis (Edinb). 2015 Dec;95(6):822-828 [PMID: 26542223]
  24. Infect Immun. 2001 Mar;69(3):1402-8 [PMID: 11179305]
  25. Front Immunol. 2017 Nov 07;8:1499 [PMID: 29163551]
  26. PLoS One. 2022 Feb 24;17(2):e0264093 [PMID: 35202419]
  27. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  28. Chem Sci. 2022 Feb 1;13(8):2226-2237 [PMID: 35310489]
  29. Microbiology (Reading). 2016 Aug;162(8):1286-1299 [PMID: 27267959]
  30. Sci Rep. 2023 Mar 13;13(1):4104 [PMID: 36914718]
  31. PLoS One. 2011 Mar 31;6(3):e17479 [PMID: 21483846]
  32. Semin Nucl Med. 2018 Mar;48(2):108-130 [PMID: 29452616]
  33. Int J Med Microbiol. 2022 Jul;312(5):151558 [PMID: 35842995]
  34. Sci Rep. 2022 Feb 9;12(1):2210 [PMID: 35140255]
  35. J Pept Sci. 2020 Jul;26(7):e3254 [PMID: 32567085]
  36. Front Immunol. 2022 May 06;13:747799 [PMID: 35603185]
  37. BMC Urol. 2008 Mar 03;8:5 [PMID: 18315881]
  38. Drug Discov Today. 2015 Jan;20(1):122-8 [PMID: 25450771]
  39. Antimicrob Agents Chemother. 2013 Oct;57(10):4615-21 [PMID: 23817377]
  40. Eur Respir Rev. 2018 Feb 28;27(147): [PMID: 29491034]
  41. World J Surg Oncol. 2007 Feb 19;5:22 [PMID: 17309797]
  42. Nat Rev Microbiol. 2020 Jan;18(1):47-59 [PMID: 31728063]
  43. Lung Cancer. 2008 Jan;59(1):12-23 [PMID: 17764778]
  44. Infect Agent Cancer. 2022 May 7;17(1):20 [PMID: 35525982]
  45. J Mol Graph Model. 2017 Sep;76:36-42 [PMID: 28711758]
  46. Cell Physiol Biochem. 2018;47(3):1060-1073 [PMID: 29843147]
  47. Pharmaceutics. 2022 Mar 15;14(3): [PMID: 35336016]
  48. Tuberculosis (Edinb). 2021 May;128:102080 [PMID: 33799143]
  49. Front Microbiol. 2019 Jun 05;10:1257 [PMID: 31231341]
  50. Pharmaceutics. 2022 Apr 24;14(5): [PMID: 35631515]
  51. Pharmaceutics. 2020 Nov 09;12(11): [PMID: 33182483]
  52. Cell Mol Life Sci. 2005 Apr;62(7-8):784-90 [PMID: 15868403]
  53. Front Oncol. 2019 May 03;9:341 [PMID: 31131258]
  54. PLoS One. 2019 Feb 26;14(2):e0212858 [PMID: 30807612]
  55. Biomaterials. 2014 Feb;35(6):2032-8 [PMID: 24314557]
  56. Cell Death Dis. 2019 Jan 18;10(2):44 [PMID: 30718463]
  57. Probiotics Antimicrob Proteins. 2022 Dec 28;: [PMID: 36576687]
  58. Eur Respir Rev. 2016 Mar;25(139):97-8 [PMID: 26929427]
  59. Salud Publica Mex. 2019 May-Jun;61(3):286-291 [PMID: 31276345]
  60. Drug Discov Today. 2020 Jan;25(1):238-247 [PMID: 31786365]
  61. Front Pharmacol. 2018 Aug 28;9:954 [PMID: 30210341]
  62. Expert Rev Respir Med. 2013 Jun;7(3):245-57 [PMID: 23734647]
  63. mBio. 2018 Sep 18;9(5): [PMID: 30228238]
  64. Sci Rep. 2019 May 27;9(1):7866 [PMID: 31133658]
  65. Comp Biochem Physiol C Toxicol Pharmacol. 2009 Mar;149(2):152-60 [PMID: 18929684]
  66. J Am Chem Soc. 2022 Apr 27;144(16):7117-7128 [PMID: 35417174]
  67. Cancer Lett. 2018 Feb 28;415:40-48 [PMID: 29197615]
  68. Environ Mol Mutagen. 2014 Oct;55(8):643-51 [PMID: 24895247]
  69. Anim Nutr. 2021 Sep;7(3):896-904 [PMID: 34632120]
  70. J Med Microbiol. 2019 Feb;68(2):211-215 [PMID: 30570475]
  71. J Theor Biol. 2014 Jan 21;341:34-40 [PMID: 24035842]
  72. Nat Rev Cancer. 2019 Jan;19(1):9-31 [PMID: 30532012]
  73. Microbes Infect. 2006 Jan;8(1):294-301 [PMID: 16126424]
  74. J Biol Chem. 2014 May 23;289(21):14448-57 [PMID: 24706763]
  75. PeerJ. 2018 Jul 25;6:e5369 [PMID: 30065898]
  76. J Bras Pneumol. 2019 Jun 03;45(3):e20190139 [PMID: 31166375]
  77. Commun Biol. 2020 Oct 23;3(1):604 [PMID: 33097805]
  78. PLoS One. 2016 Jan 21;11(1):e0147188 [PMID: 26794499]
  79. Contemp Oncol (Pozn). 2021;25(1):45-52 [PMID: 33911981]
  80. Int J Cancer. 2009 Dec 15;125(12):2936-44 [PMID: 19521963]
  81. Expert Opin Drug Deliv. 2019 Nov;16(11):1227-1258 [PMID: 31583914]
  82. Clin Chest Med. 2020 Mar;41(1):25-38 [PMID: 32008627]
  83. Sci Rep. 2023 Mar 2;13(1):3507 [PMID: 36864083]
  84. Cancer Res Treat. 2019 Jan;51(1):158-168 [PMID: 29621876]
  85. Int J Mol Sci. 2022 Jun 10;23(12): [PMID: 35742933]
  86. Int J Biol Macromol. 2021 Jul 31;183:1236-1247 [PMID: 33965488]
  87. Immunity. 2016 Oct 18;45(4):861-876 [PMID: 27760340]
  88. Am J Respir Crit Care Med. 2013 Oct 15;188(8):907-12 [PMID: 23721055]
  89. J Immunol. 2016 Mar 15;196(6):2444-9 [PMID: 26873991]
  90. Chem Biol Drug Des. 2019 Jul;94(1):1330-1338 [PMID: 30805971]
  91. Trans R Soc Trop Med Hyg. 2022 Apr 4;116(4):336-343 [PMID: 34401915]
  92. Science. 1992 Aug 21;257(5073):1055-64 [PMID: 1509256]
  93. Front Cell Infect Microbiol. 2019 Apr 18;9:112 [PMID: 31065547]
  94. Eur Respir J. 2017 Aug 24;50(2): [PMID: 28838977]
  95. Immunotherapy. 2015;7(3):207-13 [PMID: 25804474]
  96. J Cancer Res Clin Oncol. 2021 Aug;147(8):2177-2186 [PMID: 34018055]
  97. Int J Cancer. 2009 Mar 1;124(5):1183-7 [PMID: 19058197]
  98. Nat Rev Cancer. 2017 Dec;17(12):725-737 [PMID: 29077690]
  99. J Leukoc Biol. 2020 Oct;108(4):1139-1156 [PMID: 32620048]
  100. Antimicrob Agents Chemother. 2021 Nov 17;65(12):e0090421 [PMID: 34516241]
  101. Drug Dev Res. 2022 Nov;83(7):1534-1554 [PMID: 36042694]
  102. Front Microbiol. 2020 Nov 12;11:563030 [PMID: 33281761]
  103. Cell Immunol. 2016 Feb;300:33-40 [PMID: 26677761]
  104. Microb Pathog. 2021 Dec;161(Pt B):105301 [PMID: 34822969]
  105. Tuberculosis (Edinb). 2012 Mar;92 Suppl 1:S14-6 [PMID: 22441152]
  106. BMC Infect Dis. 2014 Jul 01;14:355 [PMID: 24985537]
  107. Pharmaceuticals (Basel). 2016 Oct 05;9(4): [PMID: 27782051]
  108. Lancet. 2001 Feb 17;357(9255):539-45 [PMID: 11229684]
  109. Anticancer Drugs. 2022 Jan 1;33(1):e562-e572 [PMID: 34338241]
  110. Cancer Res. 2000 Dec 15;60(24):6886-9 [PMID: 11156386]
  111. J Pathol. 2014 Nov;234(3):338-50 [PMID: 24979482]
  112. Am J Respir Crit Care Med. 2018 Nov 1;198(9):1188-1198 [PMID: 29864375]
  113. Peptides. 2020 Oct;132:170373 [PMID: 32679168]
  114. Eur J Med Chem. 2022 Nov 5;241:114640 [PMID: 35970075]
  115. Antimicrob Agents Chemother. 2007 Apr;51(4):1398-406 [PMID: 17158938]
  116. Nucleic Acids Res. 2021 Jul 2;49(W1):W5-W14 [PMID: 33893803]
  117. PLoS One. 2017 May 25;12(5):e0177062 [PMID: 28542458]
  118. Indian J Tuberc. 2017 Oct;64(4):252-275 [PMID: 28941848]
  119. Am J Respir Crit Care Med. 2012 May 15;185(10):1073-80 [PMID: 22427533]
  120. Biochimie. 2022 Oct;201:7-17 [PMID: 35764196]
  121. Nature. 2020 Mar;579(7800):567-574 [PMID: 32214244]
  122. PLoS One. 2022 Mar 2;17(3):e0264717 [PMID: 35235599]
  123. Asian Pac J Cancer Prev. 2018 Dec 25;19(12):3427-3434 [PMID: 30583665]
  124. Adv Drug Deliv Rev. 2021 Sep;176:113863 [PMID: 34273423]
  125. Antibiotics (Basel). 2021 May 21;10(6): [PMID: 34064051]
  126. Nature. 2002 Dec 19-26;420(6917):860-7 [PMID: 12490959]
  127. Bioorg Med Chem Lett. 2011 Nov 15;21(22):6804-7 [PMID: 21982497]
  128. Oncogene. 2009 Apr 30;28(17):1928-38 [PMID: 19330024]
  129. BMC Microbiol. 2018 Jun 5;18(1):54 [PMID: 29871599]
  130. J Immunol. 2012 Apr 15;188(8):4001-7 [PMID: 22427634]
  131. Chem Sci. 2016 Apr 21;7(4):2492-2500 [PMID: 28660018]
  132. Chem Sci. 2017 Jan 1;8(1):63-77 [PMID: 28451149]
  133. Int J Mol Sci. 2016 Jun 29;17(7): [PMID: 27367675]
  134. Cancer Prev Res (Phila). 2008 Aug;1(3):201-7 [PMID: 19138957]
  135. Cell Mol Bioeng. 2020 Jun 24;13(5):447-461 [PMID: 33184577]
  136. Genome Biol. 2018 Aug 24;19(1):123 [PMID: 30143034]
  137. Front Cell Infect Microbiol. 2019 Apr 02;9:84 [PMID: 31001488]
  138. J Agric Food Chem. 2011 Sep 28;59(18):10336-45 [PMID: 21851100]
  139. Nat Rev Gastroenterol Hepatol. 2010 Sep;7(9):503-14 [PMID: 20664519]
  140. J Infect Dis. 2021 Jul 15;224(2):332-344 [PMID: 33606878]
  141. J Control Release. 2020 Apr 10;320:180-200 [PMID: 31978444]
  142. Amino Acids. 2017 Jun;49(6):1053-1067 [PMID: 28314993]
  143. Mol Biol Rep. 2022 Apr;49(4):3197-3212 [PMID: 35094208]
  144. Gut Microbes. 2012 May-Jun;3(3):176-85 [PMID: 22572828]
  145. J Infect Dis. 2004 Oct 15;190(8):1476-80 [PMID: 15378441]
  146. Sci Rep. 2017 Apr 19;7:46541 [PMID: 28422156]
  147. Immunology. 2021 Feb;162(2):145-159 [PMID: 33020911]
  148. Biochemistry (Mosc). 1998 Jul;63(7):854-65 [PMID: 9721338]
  149. Infect Dis (Lond). 2022 Apr;54(4):255-268 [PMID: 34807803]
  150. Int J Antimicrob Agents. 2013 Feb;41(2):143-8 [PMID: 23141114]
  151. Biomed Res Int. 2022 Mar 21;2022:1077814 [PMID: 35355819]
  152. J Immunol. 2007 Jun 1;178(11):7190-8 [PMID: 17513768]
  153. Epidemiol Infect. 2022 Feb 02;150:e43 [PMID: 35105410]
  154. Clin Radiol. 2022 Jan;77(1):44-57 [PMID: 34103147]
  155. Pneumonol Alergol Pol. 2015;83(4):298-302 [PMID: 26166791]
  156. Biophys J. 2020 Dec 15;119(12):2440-2450 [PMID: 33157121]
  157. Lancet Infect Dis. 2020 Sep;20(9):e216-e230 [PMID: 32653070]
  158. Rev Mal Respir. 2011 Mar;28(3):328-35 [PMID: 21482336]
  159. Phytochemistry. 2011 Nov;72(16):2068-74 [PMID: 21843895]
  160. Front Cell Infect Microbiol. 2020 Feb 19;10:9 [PMID: 32140452]
  161. Molecules. 2017 Aug 29;22(9): [PMID: 28850098]
  162. Int J Mol Sci. 2020 Sep 14;21(18): [PMID: 32937921]
  163. Biochim Biophys Acta. 2016 May;1858(5):1034-43 [PMID: 26851776]
  164. Lancet Oncol. 2011 Jun;12(6):520-2 [PMID: 21624773]
  165. J Cell Mol Med. 2008 Jun;12(3):1005-22 [PMID: 18494941]
  166. Clin Lung Cancer. 2003 Jul;5(1):46-62 [PMID: 14596704]
  167. South Asian J Cancer. 2012 Jul;1(1):36-42 [PMID: 24455507]
  168. ACS Infect Dis. 2022 Mar 11;8(3):472-481 [PMID: 35230825]
  169. Semin Cell Dev Biol. 2019 Apr;88:156-162 [PMID: 29694838]
  170. ACS Omega. 2022 Apr 29;7(18):15951-15968 [PMID: 35571791]
  171. Front Pharmacol. 2020 May 20;11:697 [PMID: 32508641]
  172. Eur J Pharm Sci. 2020 Jan 1;141:105123 [PMID: 31676352]
  173. Peptides. 2021 Nov;145:170626 [PMID: 34391826]
  174. J Clin Med. 2018 Dec 17;7(12): [PMID: 30563019]
  175. Am J Cancer Res. 2015 Sep 15;5(10):3111-22 [PMID: 26693063]
  176. Molecules. 2020 Dec 24;26(1): [PMID: 33374458]
  177. BMC Bioinformatics. 2022 Sep 26;23(1):389 [PMID: 36163001]
  178. Microorganisms. 2020 Apr 27;8(5): [PMID: 32349409]
  179. Genome Biol. 2016 Jul 28;17(1):163 [PMID: 27468850]
  180. Antimicrob Agents Chemother. 2017 Mar 24;61(4): [PMID: 28167546]
  181. Prim Care Respir J. 2010 Mar;19(1):57-61 [PMID: 19756330]
  182. Biomedicines. 2022 May 09;10(5): [PMID: 35625834]
  183. Int J Mol Sci. 2022 Jul 29;23(15): [PMID: 35955516]
  184. Med Arch. 2017 Jun;71(3):212-214 [PMID: 28974836]
  185. J Hematol Oncol. 2022 Jun 3;15(1):73 [PMID: 35659720]
  186. Adv Exp Med Biol. 2019;1117:131-147 [PMID: 30980357]
  187. Multidiscip Respir Med. 2016 Apr 04;11:17 [PMID: 27047662]
  188. Oncogene. 2021 Jul;40(26):4413-4424 [PMID: 34108619]
  189. PLoS One. 2022 Aug 25;17(8):e0273504 [PMID: 36006947]
  190. Cancer Metab. 2013 Jan 23;1(1):5 [PMID: 24280044]

Word Cloud

Created with Highcharts 10.0.0peptideslungcancerdiseasescantuberculosisimportantmoleculesdualantimicrobialreviewmultifunctionaldoubleactivitydrugsTuberculosismanycasescorrelatedconfusedsimilarsymptomsManymeta-analysesprovengreaterchancedevelopingpatientsactivepulmonarythereforemonitorpatientlongtimerecoverysearchcombinedtherapiestreatwellfacegreatproblemdrugresistancePeptidesderivedbreakdownproteinsmembranolyticclassalreadystudiedproposeddestabilizecellularhomeostasisperforminganticancerfunctionofferingseveralpossibilitiesadaptationadequatedeliveryactionfocustworeasonusenamelyharmfuleffectshumansmainanti-inflammatorybioactivehighlightfouranti-tuberculosisanti-cancermaycontributeobtainingfunctionalityAntimicrobialresponsecoinfectionsMycobacteriumtreatment

Similar Articles

Cited By